Câu hỏi:
14/07/2025 4
Tìm m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{5x - {x^2}}}{{\sqrt {{x^4} + 4{x^2}} }}\;\;khi\;x < 0\\m + \frac{{2x - 3}}{{x + 2}}\;\;\;\;\;khi\;x \ge 0\end{array} \right.\) liên tục tại điểm x0 = 0.
Quảng cáo
Trả lời:
A
Ta có \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{5x - {x^2}}}{{\sqrt {{x^4} + 4{x^2}} }} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{x\left( {5 - x} \right)}}{{ - x\sqrt {{x^2} + 4} }} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\left( {5 - x} \right)}}{{ - \sqrt {{x^2} + 4} }} = - \frac{5}{2}\);
\(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {m + \frac{{2x - 3}}{{x + 2}}} \right) = m - \frac{3}{2} = f\left( 0 \right)\).
Để hàm số liên tục tại x0 = 0 thì \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = f\left( 0 \right)\) nên \(m - \frac{3}{2} = - \frac{5}{2} \Leftrightarrow m = - 1\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Cho hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}} & {\rm{khi}}\,x \ne 1\\x + 1 & {\rm{khi}}\,x = 1\end{array} \right.\) và \(g(x) = 4{x^2} - x + 1\). Khi đó:
a) Ta có \(f(1) = 2\).
b) Hàm số \(f\left( x \right)\) liên tục tại điểm \({x_0} = 1\).
c) Hàm số \(g\left( x \right)\)liên tục tại điểm \({x_0} = 1\).
d) Hàm số \(y = f\left( x \right) - g\left( x \right)\) không liên tục tại điểm \({x_0} = 1\).
Cho hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}} & {\rm{khi}}\,x \ne 1\\x + 1 & {\rm{khi}}\,x = 1\end{array} \right.\) và \(g(x) = 4{x^2} - x + 1\). Khi đó:
a) Ta có \(f(1) = 2\).
b) Hàm số \(f\left( x \right)\) liên tục tại điểm \({x_0} = 1\).
c) Hàm số \(g\left( x \right)\)liên tục tại điểm \({x_0} = 1\).
d) Hàm số \(y = f\left( x \right) - g\left( x \right)\) không liên tục tại điểm \({x_0} = 1\).
Lời giải
a) Ta có: \(f\left( {{x_0}} \right) = f(1) = 1 + 1 = 2\).
b) \(\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x + 1) = 2 = f\left( 1 \right){\rm{. }}\)
Vậy hàm số liên tục tại điểm \({x_0} = 1\).
c) Ta có: \(g\left( {{x_0}} \right) = g(1) = 4\).
\(\mathop {\lim }\limits_{x \to {x_0}} g(x) = \mathop {\lim }\limits_{x \to 1} \left( {4{x^2} - x + 1} \right) = 4 = g(1)\)
Vậy hàm số liên tục tại điểm \({x_0} = 1\).
d) Hàm số số \(y = f\left( x \right) - g\left( x \right)\) liên tục tại điểm \({x_0} = 1\).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
Hàm số f(x) liên tục với ∀x ≠ 2.
Do đó f(x) liên tục trên ℝ Û f(x) liên tục tại x = 2 Û \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\) (1).
Ta có \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x - 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 1} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 1} \right) = 2 + 1 = 3\); f(2) = m.
Khi đó (1) Û 3 = m Û m = 3.
Trả lời: 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.