Câu hỏi:

14/07/2025 21 Lưu

Tìm m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{5x - {x^2}}}{{\sqrt {{x^4} + 4{x^2}} }}\;\;khi\;x < 0\\m + \frac{{2x - 3}}{{x + 2}}\;\;\;\;\;khi\;x \ge 0\end{array} \right.\) liên tục tại điểm x0 = 0.     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

A

Ta có \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{5x - {x^2}}}{{\sqrt {{x^4} + 4{x^2}} }} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{x\left( {5 - x} \right)}}{{ - x\sqrt {{x^2} + 4} }} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\left( {5 - x} \right)}}{{ - \sqrt {{x^2} + 4} }} =  - \frac{5}{2}\);

\(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {m + \frac{{2x - 3}}{{x + 2}}} \right) = m - \frac{3}{2} = f\left( 0 \right)\).

Để hàm số liên tục tại x0 = 0 thì \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = f\left( 0 \right)\) nên \(m - \frac{3}{2} =  - \frac{5}{2} \Leftrightarrow m =  - 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x - 1}  - 1}}{{x - 1}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{2\left( {x - 1} \right)}}{{\left( {\sqrt {2x - 1}  + 1} \right)\left( {x - 1} \right)}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{2}{{\sqrt {2x - 1}  + 1}} = 1\].

Để hàm số liên tục tại x = 1 thì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\) Û m – 2024 = 1 Û m = 2025.

Trả lời: 2025.

Câu 2

Lời giải

B

Dựa vào đồ thị hàm số y = f(x), ta thấy hàm số f(x) liên tục tại x = 1.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP