Câu hỏi:

27/07/2025 6 Lưu

Bác Bon gửi tiết kiệm 500 triệu đồng ở một ngân hàng với lãi suất không đổi 7,5%/năm theo hình thức lãi kép. Tổng số tiền bác Bon thu được (cả vốn lẫn lãi) sau n năm là A = 500.(1 + 0,075)n (triệu đồng). Tính thời gian tối thiểu gửi tiết kiệm để bác Bon thu được ít nhất 800 triệu đồng (cả vốn lẫn lãi). 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

D

Theo đề ta có 500.(1 + 0,075)n ≥ 800 Û (1 + 0,075)n\(\frac{8}{5}\) Û \(n \ge {\log _{\left( {1 + 0,075} \right)}}\frac{8}{5} \approx 6,5\).

Do đó tối thiểu 7 năm gửi tiết kiện để bác Bon thu được ít nhất 800 triệu đồng (cả vốn lẫn lãi).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\({\log _a}\left( {{b^{{{\log }_a}b}}} \right) - 2{\log _{\sqrt a }}b + 4 = 0\) \( \Leftrightarrow {\left( {{{\log }_a}b} \right)^2} - 4{\log _a}b + 4 = 0\)\( \Leftrightarrow {\log _a}b = 2 \Leftrightarrow b = {a^2}\).

Vậy ta cần tìm m để phương trình x2 – (m + 2)x + 27 = 0 có hai nghiệm a, b dương phân biệt khác 1 và thỏa mãn b = a2.

Giả sử phương trình có hai nghiệm a, b theo định lý Viet ta có:

a+b=m+2ab=27a2=b a+b=m+2a3=27a2=b a=3b=9m+2=12m=10

Thử lại m =10 ta thấy phương trình x2 – 12x + 27 = 0 có hai nghiệm 3; 9 thỏa mãn yêu cầu bài toán.

Vậy m = 10 là giá trị cần tìm.

Trả lời: 10.

Câu 2

Lời giải

B

\({\left( {\frac{2}{3}} \right)^{{x^2} - x + 1}} > {\left( {\frac{2}{3}} \right)^{2x - 1}}\)\( \Leftrightarrow {x^2} - x + 1 < 2x - 1\)\( \Leftrightarrow {x^2} - 3x + 2 < 0\) Û 1 < x < 2.

Vậy tập nghiệm của bất phương trình là S = (1; 2).

Suy ra a = 1 và b = 2. Do đó b – a = 2 – 1 = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP