Giá trị của một ngôi nhà sau khi xây n năm được cho bởi công thức V = 6250.ean (triệu đồng) với a là một hệ số xác định. Biết khi n = 3 thì V = 8750 (triệu đồng).
a) Giá trị ban đầu của ngôi nhà là 6250000000 đồng.
b) Giá trị của a là a = 0,112 (làm tròn kết quả đến 3 chữ số sau dấy phẩy).
c) Giá trị của ngôi nhà sau 5 năm là 11000 triệu đồng (làm tròn kết quả đến hàng đơn vị).
d) Sau ít nhất 6 năm thì giá trị ngôi nhà sẽ tăng gấp đôi.
Giá trị của một ngôi nhà sau khi xây n năm được cho bởi công thức V = 6250.ean (triệu đồng) với a là một hệ số xác định. Biết khi n = 3 thì V = 8750 (triệu đồng).
a) Giá trị ban đầu của ngôi nhà là 6250000000 đồng.
b) Giá trị của a là a = 0,112 (làm tròn kết quả đến 3 chữ số sau dấy phẩy).
c) Giá trị của ngôi nhà sau 5 năm là 11000 triệu đồng (làm tròn kết quả đến hàng đơn vị).
d) Sau ít nhất 6 năm thì giá trị ngôi nhà sẽ tăng gấp đôi.
Quảng cáo
Trả lời:
a) \({\log _2}25 = \frac{1}{{{{\log }_{25}}2}} = \frac{1}{b}\).
b) \({\log _2}75 = {\log _2}\left( {25.3} \right) = {\log _2}25 + {\log _2}3 = a + \frac{1}{b}\).
c) log2(3.9) = log233 = 3log23 = 3a.
d) Ta có \({\log _{48600}}25 = \frac{1}{{{{\log }_{25}}48600}} = \frac{1}{{{{\log }_{25}}\left( {{3^5}{{.2}^3}.25} \right)}}\)\( = \frac{1}{{{{\log }_{25}}{3^5} + {{\log }_{25}}{2^3} + {{\log }_{25}}25}}\)
\( = \frac{1}{{5{{\log }_{25}}2.{{\log }_2}3 + 3{{\log }_{25}}2 + 1}}\)\( = \frac{1}{{5ab + 3b + 1}}\).
Suy ra x = 5; y = 3; z = 1. Do đó x + y + z = 9.
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\({\log _a}\left( {{b^{{{\log }_a}b}}} \right) - 2{\log _{\sqrt a }}b + 4 = 0\) \( \Leftrightarrow {\left( {{{\log }_a}b} \right)^2} - 4{\log _a}b + 4 = 0\)\( \Leftrightarrow {\log _a}b = 2 \Leftrightarrow b = {a^2}\).
Vậy ta cần tìm m để phương trình x2 – (m + 2)x + 27 = 0 có hai nghiệm a, b dương phân biệt khác 1 và thỏa mãn b = a2.
Giả sử phương trình có hai nghiệm a, b theo định lý Viet ta có:
Thử lại m =10 ta thấy phương trình x2 – 12x + 27 = 0 có hai nghiệm 3; 9 thỏa mãn yêu cầu bài toán.
Vậy m = 10 là giá trị cần tìm.
Trả lời: 10.
Lời giải
B
\({\left( {\frac{2}{3}} \right)^{{x^2} - x + 1}} > {\left( {\frac{2}{3}} \right)^{2x - 1}}\)\( \Leftrightarrow {x^2} - x + 1 < 2x - 1\)\( \Leftrightarrow {x^2} - 3x + 2 < 0\) Û 1 < x < 2.
Vậy tập nghiệm của bất phương trình là S = (1; 2).
Suy ra a = 1 và b = 2. Do đó b – a = 2 – 1 = 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.