Câu hỏi:

27/07/2025 35 Lưu

Cho hàm số f(x) = 2x và g(x) = log3(−x2 + 3). Khi đó:

a) Đồ thị của hàm số f(x) là hình dưới đây

Cho hàm số f(x) = 2x và g(x) = log3(−x2 + 3). Khi đó:  a) Đồ thị của hàm số f(x) là hình dưới đây (ảnh 1)

b) Hàm số g(x) có tập xác định \(D = \left( { - \sqrt 3 ;\sqrt 3 } \right)\).

c) x = 2 là nghiệm của phương trình f(x) = 8x – 2.

d) Bất phương trình g(x) > log32x có tập nghiệm S = (−3; 1).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đây là đồ thị của hàm số y = 2x.

b) Điều kiện: −x2 + 3 > 0 Û \( - \sqrt 3 < x < \sqrt 3 \).

c) Có f(x) = 8x – 2 Û 2x = 23x – 6 Û x = 3x – 6 Û x = 3.

d) g(x) > log32x Û log3(−x2 + 3) > log32x \( \Leftrightarrow \left\{ \begin{array}{l}0 < x < \sqrt 3 \\ - {x^2} - 2x + 3 > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}0 < x < \sqrt 3 \\ - 3 < x < 1\end{array} \right. \Leftrightarrow 0 < x < 1\).

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

A

Điều kiện: 2x + 4 > 0 Û x > −2.

log2(2x + 4) ≥ 0 Û 2x + 4 ≥ 1 Û \(x \ge - \frac{3}{2}\).

Kết hợp với điều kiện, ta có tập nghiệm của bất phương trình \(S = \left[ { - \frac{3}{2}; + \infty } \right)\).

Lời giải

Ta có \({2^{{x^2}}}{.3^{x + 1}} = 2\)\( \Leftrightarrow {\log _2}\left( {{2^{{x^2}}}{{.3}^{x + 1}}} \right) = {\log _2}2\)\( \Leftrightarrow {\log _2}{2^{{x^2}}} + {\log _2}{3^{x + 1}} = 1\)

\( \Leftrightarrow {x^2} + \left( {x + 1} \right){\log _2}3 - 1 = 0\) Û (x + 1)(x – 1 + log23) = 0 Û x = −1 hoặc x = 1 – log23.

Do đó tổng các nghiệm của phương trình là −log23 ≈ −1,6.

Trả lời: −1,6.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP