Số lượng của một loài vi khuẩn sau x giờ được tính bởi công thức f(x) = Aerx, trong đó A là số lượng vi khuẩn ban đầu, r là tỉ lệ tăng trưởng (r > 0). Biết số vi khuẩn ban đầu là 1000 con và sau 10 giờ tăng trưởng thành 5000 con. Tính tỉ lệ tăng trưởng của vi khuẩn (làm tròn đến chữ số phần trăm).
Số lượng của một loài vi khuẩn sau x giờ được tính bởi công thức f(x) = Aerx, trong đó A là số lượng vi khuẩn ban đầu, r là tỉ lệ tăng trưởng (r > 0). Biết số vi khuẩn ban đầu là 1000 con và sau 10 giờ tăng trưởng thành 5000 con. Tính tỉ lệ tăng trưởng của vi khuẩn (làm tròn đến chữ số phần trăm).
Quảng cáo
Trả lời:
Theo đề ta có 5000 = 1000e10r Û e10r = 5 Û \(r = \frac{{\ln 5}}{{10}} \approx 0,16\).
Trả lời: 0,16.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Điều kiện: \(\left\{ \begin{array}{l}x - 40 > 0\\60 - x > 0\end{array} \right. \Leftrightarrow 40 < x < 60\).
log(x – 40) + log(60 – x) ≤ 2 Û log[(x – 40)(60 – x)] ≤ 2 Û (x – 40)(60 – x) ≤ 102
Û −x2 + 100x – 2500 ≤ 0 Û −(x – 50)2 ≤ 0, ∀xÎ ℝ.
Kết hợp với điều kiện, ta có tập nghiệm của bất phương trình là D = (40; 60).
a) Bất pương trình tương đương với log[(x – 40)(60 – x)] ≤ 2.
b) Tập nghiệm của bất phương trình D = (40; 60). Suy ra a = 40; b = 60. Do đó b – a = 20.
c) Tập các số nguyên dương thỏa mãn bất phương trình trên là {41; 42; 43; 44; 45; ....; 59}. Có 19 số nguyên dương thỏa mãn.
d) Tập các số tự nhiên chẵn thỏa mãn bất phương trình trên là {42; 44; 46; ...; 58}. Có 9 số tự nhiên chẵn thỏa mãn yêu cầu.
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
Ta có \({2^{{x^2}}}{.3^{x + 1}} = 2\)\( \Leftrightarrow {\log _2}\left( {{2^{{x^2}}}{{.3}^{x + 1}}} \right) = {\log _2}2\)\( \Leftrightarrow {\log _2}{2^{{x^2}}} + {\log _2}{3^{x + 1}} = 1\)
\( \Leftrightarrow {x^2} + \left( {x + 1} \right){\log _2}3 - 1 = 0\) Û (x + 1)(x – 1 + log23) = 0 Û x = −1 hoặc x = 1 – log23.
Do đó tổng các nghiệm của phương trình là −log23 ≈ −1,6.
Trả lời: −1,6.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
