Cho \(\Delta ABC,E\) là trung điểm BC, I là trung điểm của AB. Gọi D, I, J, K lần lượt là các điểm thỏa mãn \(\overrightarrow {BE} = 2\overrightarrow {BD} ,\overrightarrow {AJ} = \frac{1}{2}\overrightarrow {JC} ,\overrightarrow {IK} = m\overrightarrow {IJ} \). Tìm m để A, K, D thẳng hàng.
Quảng cáo
Trả lời:

Đáp án đúng là: B
Ta có A, K, D thẳng hàng \( \Leftrightarrow \overrightarrow {AD} = n\overrightarrow {AK} = n\left( {\overrightarrow {AI} + \overrightarrow {IK} } \right)\) (1)
Ta có \(\overrightarrow {BE} = 2\overrightarrow {BD} = 2\left( {\overrightarrow {BA} + \overrightarrow {AD} } \right) = 2\overrightarrow {BA} + 2\overrightarrow {AD} \).
Suy ra \(2\overrightarrow {AD} = \overrightarrow {BE} - 2\overrightarrow {BA} = \overrightarrow {BA} + \overrightarrow {AE} - 2\overrightarrow {BA} = \overrightarrow {AB} + \overrightarrow {AE} \)
\( = \overrightarrow {AB} + \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{3}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \)
\( = 3\overrightarrow {AI} + \frac{3}{2}\overrightarrow {AJ} = 3\overrightarrow {AI} + \frac{3}{2}\left( {\overrightarrow {AI} + \overrightarrow {IJ} } \right) = \frac{9}{2}\overrightarrow {AI} + \frac{3}{2}\overrightarrow {IJ} \).
Mà \(\overrightarrow {IK} = m\overrightarrow {IJ} \) nên \(2\overrightarrow {AD} = \frac{9}{2}\overrightarrow {AI} + \frac{3}{{2m}}\overrightarrow {IK} \Rightarrow \overrightarrow {AD} = \frac{9}{4}\overrightarrow {AI} + \frac{3}{{4m}}\overrightarrow {IK} \) (2)
Từ (1) và (2) \( \Rightarrow \frac{9}{4} = \frac{3}{{4m}} \Leftrightarrow m = \frac{1}{3}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Do \(M\) là trung điểm của \(AB\) nên ta có \(\overrightarrow {MA} + \overrightarrow {MB} = \vec 0\).
b) Đúng. Do \(N\) là trung điểm của \(CD\) nên ta có \(\overrightarrow {NC} + \overrightarrow {ND} = \vec 0\).
c) Sai. Theo quy tắc cộng, ta có \(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AN} = \overrightarrow {MA} + \overrightarrow {AC} + \overrightarrow {CN} \). (1)
d) Đúng. Ta lại có \(\overrightarrow {MN} = \overrightarrow {MB} + \overrightarrow {BD} + \overrightarrow {DN} \). (2)
Cộng hai đẳng thức (1), (2) vế theo vế, ta được
\(2\overrightarrow {MN} = \left( {\overrightarrow {MA} + \overrightarrow {MB} } \right) + \left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) + \left( {\overrightarrow {CN} + \overrightarrow {DN} } \right)\).
Kết hợp với kết quả ở ý a) và b), ta suy ra được \(2\overrightarrow {MN} = \overrightarrow {AC} + \overrightarrow {BD} \).
Lời giải
a) Đúng. Ta có \(\overrightarrow {AN} = \frac{1}{6}\overrightarrow {AC} = \frac{1}{6}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right)\).
b) Sai. Ta có \(\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \frac{1}{6}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) - \frac{1}{2}\overrightarrow {AB} = \frac{{ - 1}}{3}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AD} .\)
c) Sai. Ta có \(\overrightarrow {MP} = \overrightarrow {AP} - \overrightarrow {AM} = \frac{1}{4}\overrightarrow {AD} - \frac{1}{2}\overrightarrow {AB} \).
d) Đúng. Ta có \(\overrightarrow {MN} = \frac{1}{6}\left( {\overrightarrow {AD} - 2\overrightarrow {AB} } \right) = \frac{1}{6} \cdot 4 \cdot \frac{1}{4}\left( {\overrightarrow {AD} - 2\overrightarrow {AB} } \right) = \frac{2}{3}\overrightarrow {MP} \).
Suy ra \(\overrightarrow {MN} ,\overrightarrow {MP} \) cùng phương. Vậy ba điểm \(M,N,P\) thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.