Trên màn hình ra đa của một đài kiểm soát không lưu (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét, một máy bay trực thăng chuyển động thẳng đều từ thành phố A có tọa độ \(\left( {600;\,200} \right)\) đến thành phố B có tọa độ \(\left( {200;500} \right)\) và thời gian bay quãng đường AB là 3 giờ. Giả sử \(M\left( {x;\,y} \right)\) là vị trí của máy bay trực thăng tại thời điểm sau khi xuất phát 1 giờ.
a) \(\overrightarrow {AB} = \left( {400;300} \right)\).
b) \(\overrightarrow {AM} = \left( {x - 600;y - 200} \right)\).
c) \(\overrightarrow {AM} = 3\overrightarrow {AB} \).
d) \(M\left( {\frac{{1400}}{3};300} \right)\).
Trên màn hình ra đa của một đài kiểm soát không lưu (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét, một máy bay trực thăng chuyển động thẳng đều từ thành phố A có tọa độ \(\left( {600;\,200} \right)\) đến thành phố B có tọa độ \(\left( {200;500} \right)\) và thời gian bay quãng đường AB là 3 giờ. Giả sử \(M\left( {x;\,y} \right)\) là vị trí của máy bay trực thăng tại thời điểm sau khi xuất phát 1 giờ.
a) \(\overrightarrow {AB} = \left( {400;300} \right)\).
b) \(\overrightarrow {AM} = \left( {x - 600;y - 200} \right)\).
c) \(\overrightarrow {AM} = 3\overrightarrow {AB} \).
d) \(M\left( {\frac{{1400}}{3};300} \right)\).
Quảng cáo
Trả lời:
a) Sai. Ta có \(A\left( {600;\,200} \right)\), \(B\left( {200;500} \right)\). Suy ra \(\overrightarrow {AB} = \left( { - 400;300} \right)\).
b) Đúng. Với \(M\left( {x;\,y} \right)\) thì \(\overrightarrow {AM} = \left( {x - 600;y - 200} \right)\).
c) Sai. Vì máy bay trực thăng chuyển động thẳng đều và thời gian bay quãng đường AB là 3 giờ, thời gian bay quãng đường AM là 1 giờ nên \(\overrightarrow {AM} = \frac{1}{3}\overrightarrow {AB} \).
d) Đúng. Từ \(\overrightarrow {AM} = \frac{1}{3}\overrightarrow {AB} \), ta suy ra \(\left\{ \begin{array}{l}x - 600 = \frac{1}{3} \cdot \left( { - 400} \right)\\y - 200 = \frac{1}{3} \cdot 300\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{1400}}{3}\\y = 300\end{array} \right.\).
Vậy \(M\left( {\frac{{1400}}{3};300} \right)\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Ta có \(\overrightarrow c = 5\overrightarrow a - 2\overrightarrow b = 5\left( {3; - 2} \right) - 2\left( {1;4} \right) = \left( {13; - 18} \right)\).
Lời giải
a) Đúng. \(\overrightarrow {AC} = \left( {4\sqrt 3 ;4} \right) \Rightarrow AC = \sqrt {{{\left( {4\sqrt 3 } \right)}^2} + {4^2}} = 8\).
b) Sai. Ta có \(\overrightarrow {AB} = \left( { - 4\sqrt 3 ;4} \right) \Rightarrow AB = \sqrt {{{\left( { - 4\sqrt 3 } \right)}^2} + {4^2}} = 8\).
Ta thấy \(AB = AC = 8\) nên tam giác \(ABC\) cân tại \(A\).
Lại có \(\overrightarrow {BC} = \left( {8\sqrt 3 ;0} \right) \Rightarrow BC = \sqrt {{{\left( {8\sqrt 3 } \right)}^2} + {0^2}} = 8\sqrt 3 \Rightarrow BC \ne AB\).
Vậy tam giác \(ABC\) không cân tại \(B\).
c) Đúng. Chu vi tam giác \(ABC:2p = AB + AC + BC = 8 + 8 + 8\sqrt 3 = 8\left( {2 + \sqrt 3 } \right)\).
Nửa chu vi tam giác là \(p = 4\left( {2 + \sqrt 3 } \right)\).
Diện tích tam giác: \({S_{\Delta ABC}} = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)} = 16\sqrt 3 \).
d) Đúng. Ta có \(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB \cdot AC}} = \frac{{{8^2} + {8^2} - {{\left( {8\sqrt 3 } \right)}^2}}}{{2 \cdot 8 \cdot 8}} = - \frac{1}{2} \Rightarrow \widehat {BAC} = 120^\circ \).
Vì tam giác \(ABC\) cân tại \(A\) nên \(\widehat {ABC} = \widehat {ACB} = 30^\circ \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.