Câu hỏi:

03/08/2025 7 Lưu

Trên màn hình ra đa của một đài kiểm soát không lưu (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét, một máy bay trực thăng chuyển động thẳng đều từ thành phố A có tọa độ \(\left( {600;\,200} \right)\) đến thành phố B có tọa độ \(\left( {200;500} \right)\) và thời gian bay quãng đường AB là 3 giờ. Giả sử \(M\left( {x;\,y} \right)\) là vị trí của máy bay trực thăng tại thời điểm sau khi xuất phát 1 giờ.

a) \(\overrightarrow {AB}  = \left( {400;300} \right)\).

b) \(\overrightarrow {AM}  = \left( {x - 600;y - 200} \right)\).

c) \(\overrightarrow {AM}  = 3\overrightarrow {AB} \).

d) \(M\left( {\frac{{1400}}{3};300} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Sai. Ta có \(A\left( {600;\,200} \right)\), \(B\left( {200;500} \right)\). Suy ra \(\overrightarrow {AB}  = \left( { - 400;300} \right)\).

b) Đúng. Với \(M\left( {x;\,y} \right)\) thì \(\overrightarrow {AM}  = \left( {x - 600;y - 200} \right)\).

c) Sai. Vì máy bay trực thăng chuyển động thẳng đều và thời gian bay quãng đường AB là 3 giờ, thời gian bay quãng đường AM là 1 giờ nên \(\overrightarrow {AM}  = \frac{1}{3}\overrightarrow {AB} \).

d) Đúng. Từ \(\overrightarrow {AM}  = \frac{1}{3}\overrightarrow {AB} \), ta suy ra \(\left\{ \begin{array}{l}x - 600 = \frac{1}{3} \cdot \left( { - 400} \right)\\y - 200 = \frac{1}{3} \cdot 300\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{1400}}{3}\\y = 300\end{array} \right.\).

Vậy \(M\left( {\frac{{1400}}{3};300} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. \(\overrightarrow {AC}  = \left( {4\sqrt 3 ;4} \right) \Rightarrow AC = \sqrt {{{\left( {4\sqrt 3 } \right)}^2} + {4^2}}  = 8\).

b) Sai. Ta có \(\overrightarrow {AB}  = \left( { - 4\sqrt 3 ;4} \right) \Rightarrow AB = \sqrt {{{\left( { - 4\sqrt 3 } \right)}^2} + {4^2}}  = 8\).

Ta thấy \(AB = AC = 8\) nên tam giác \(ABC\) cân tại \(A\).

Lại có \(\overrightarrow {BC}  = \left( {8\sqrt 3 ;0} \right) \Rightarrow BC = \sqrt {{{\left( {8\sqrt 3 } \right)}^2} + {0^2}}  = 8\sqrt 3  \Rightarrow BC \ne AB\).

Vậy tam giác \(ABC\) không cân tại \(B\).

c) Đúng. Chu vi tam giác \(ABC:2p = AB + AC + BC = 8 + 8 + 8\sqrt 3  = 8\left( {2 + \sqrt 3 } \right)\).

Nửa chu vi tam giác là \(p = 4\left( {2 + \sqrt 3 } \right)\).

Diện tích tam giác: \({S_{\Delta ABC}} = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)}  = 16\sqrt 3 \).

d) Đúng. Ta có \(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB \cdot AC}} = \frac{{{8^2} + {8^2} - {{\left( {8\sqrt 3 } \right)}^2}}}{{2 \cdot 8 \cdot 8}} =  - \frac{1}{2} \Rightarrow \widehat {BAC} = 120^\circ \).

 Vì tam giác \(ABC\) cân tại \(A\) nên \(\widehat {ABC} = \widehat {ACB} = 30^\circ \).

Lời giải

Ta có \(\overrightarrow u  = \overrightarrow v  \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 3 = 5m - 3\\2m = {m^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 5m + 6 = 0\\{m^2} - 2m = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 2\\m = 3\end{array} \right.\\\left[ \begin{array}{l}m = 0\\m = 2\end{array} \right.\end{array} \right. \Rightarrow m = 2\).

Đáp án: 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP