Phần III. Trắc nghiệm trả lời ngắn
Cho \(\cot \alpha = - \sqrt 2 \) và \(P = \frac{{2\sin \alpha - \sqrt 2 \cos \alpha }}{{4\sin \alpha + 3\sqrt 2 \cos \alpha }}\). Tính giá trị biểu thức \(A = {m^2} + {n^2}\) biết \(P = \frac{m}{n}\)(\(m \in \mathbb{Z},n \in \mathbb{N}\) và \(\frac{m}{n}\) là phân số tối giản).
Phần III. Trắc nghiệm trả lời ngắn
Cho \(\cot \alpha = - \sqrt 2 \) và \(P = \frac{{2\sin \alpha - \sqrt 2 \cos \alpha }}{{4\sin \alpha + 3\sqrt 2 \cos \alpha }}\). Tính giá trị biểu thức \(A = {m^2} + {n^2}\) biết \(P = \frac{m}{n}\)(\(m \in \mathbb{Z},n \in \mathbb{N}\) và \(\frac{m}{n}\) là phân số tối giản).
Quảng cáo
Trả lời:
Vì \(\cot \alpha = - \sqrt 2 \Rightarrow \sin \alpha \ne 0\). Chia cả tử và mẫu của biểu thức \(P\) cho \(\sin \alpha \) ta được:
\(P = \frac{{\frac{{2\sin \alpha - \sqrt 2 \cos \alpha }}{{\sin \alpha }}}}{{\frac{{4\sin \alpha + 3\sqrt 2 \cos \alpha }}{{\sin \alpha }}}} = \frac{{2 - \sqrt 2 \cot \alpha }}{{4 + 3\sqrt 2 \cot \alpha }} = \frac{{2 - \sqrt 2 \cdot \left( { - \sqrt 2 } \right)}}{{4 + 3\sqrt 2 \cdot \left( { - \sqrt 2 } \right)}} = - 2 = \frac{m}{n} \Rightarrow \left\{ \begin{array}{l}m = - 2\\n = 1\end{array} \right.\).
Khi đó \(A = {\left( { - 2} \right)^2} + {1^2} = 5\).
Đáp án: \(5\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có \(\widehat C = 180^\circ - \widehat A - \widehat B = 180^\circ - 40^\circ - 60^\circ = 80^\circ \).
Áp dụng định lý sin: \[\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}} \Rightarrow BC = \frac{{AB}}{{\sin C}} \cdot \sin A = \frac{5}{{\sin 80^\circ }} \cdot \sin 40^\circ \approx 3,3\].
Lời giải
Đáp án đúng là: D
\({c^2} = {a^2} + {b^2} - 2ab\cos C\)
\({c^2} = {8^2} + {10^2} - 2 \cdot 8 \cdot 10\cos 60^\circ = 84 \Rightarrow c = 2\sqrt {21} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.