Câu hỏi:

05/08/2025 11 Lưu

Cho góc \(\alpha \,\left( {0^\circ  < \alpha  < 90^\circ } \right)\) thỏa mãn \(\sin \alpha  = \frac{1}{3}\). Tính giá trị biểu thức \[P = \sin \left( {90^\circ  - \alpha } \right) - \cos \left( {180^\circ  - \alpha } \right)\] (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \[P = \sin \left( {90^\circ  - \alpha } \right) - \cos \left( {180^\circ  - \alpha } \right) = \cos \alpha  - \left( { - \cos \alpha } \right) = 2\cos \alpha \].

Mặt khác \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1 \Rightarrow {\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = 1 - {\left( {\frac{1}{3}} \right)^2} = \frac{8}{9} \Leftrightarrow \left[ \begin{array}{l}\cos \alpha  = \frac{{2\sqrt 2 }}{3}\\\cos \alpha  =  - \frac{{2\sqrt 2 }}{3}\end{array} \right.\).

Lại có \(0^\circ  < \alpha  < 90^\circ \) nên \(\cos \alpha  > 0\), từ đó ta được \(\cos \alpha  = \frac{{2\sqrt 2 }}{3}\).

Vậy \[P = 2\cos \alpha  = \frac{{4\sqrt 2 }}{3} \approx 1,89\].

Đáp án: \(1,89\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Ta có \(\widehat C = 180^\circ  - \widehat A - \widehat B = 180^\circ  - 40^\circ  - 60^\circ  = 80^\circ \).

Áp dụng định lý sin: \[\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}} \Rightarrow BC = \frac{{AB}}{{\sin C}} \cdot \sin A = \frac{5}{{\sin 80^\circ }} \cdot \sin 40^\circ  \approx 3,3\].

Câu 2

Lời giải

Đáp án đúng là: D

\({c^2} = {a^2} + {b^2} - 2ab\cos C\)

\({c^2} = {8^2} + {10^2} - 2 \cdot 8 \cdot 10\cos 60^\circ  = 84 \Rightarrow c = 2\sqrt {21} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP