Gia đình bác An có mảnh đất như hình bên dưới. Nhà nước có dự án xây bệnh viện nên thu hồi mảnh đất của bác, giá đền bù là \(1,2\) triệu đồng 1\({{\rm{m}}^{\rm{2}}}\).

Hỏi số tiền gia đình nhà bác An nhận được khoảng bao nhiêu triệu đồng? (làm tròn kết quả đến hàng đơn vị).
Gia đình bác An có mảnh đất như hình bên dưới. Nhà nước có dự án xây bệnh viện nên thu hồi mảnh đất của bác, giá đền bù là \(1,2\) triệu đồng 1\({{\rm{m}}^{\rm{2}}}\).
Hỏi số tiền gia đình nhà bác An nhận được khoảng bao nhiêu triệu đồng? (làm tròn kết quả đến hàng đơn vị).
Quảng cáo
Trả lời:
Ta có \(B{D^2} = A{D^2} + A{B^2} - 2AD \cdot AB \cdot \cos \left( {73,07^\circ } \right) \approx 517\)\( \Rightarrow BD \approx 23\,\left( {\rm{m}} \right)\).
\[{S_{ABD}} = \frac{1}{2}AD \cdot AB \cdot \sin \left( {73,07^\circ } \right) \approx 158\,\left( {{{\rm{m}}^2}} \right)\].
Nửa chu vi tam giác \(BCD\) là: \(\frac{{23 + 10 + 18}}{2} = \frac{{51}}{2} = 25,5\).
\({S_{BCD}} = \sqrt {25,5.\left( {25,5 - 23} \right)\left( {25,5 - 10} \right)\left( {25,5 - 18} \right)} \approx 86\,\left( {{{\rm{m}}^2}} \right)\).
\({S_{ABCD}} = {S_{ABD}} + {S_{BCD}} \approx 244\,\left( {{{\rm{m}}^2}} \right)\).
Vậy số tiền gia đình nhà bác An nhận được khoảng \(244 \cdot 1,2 \approx 293\) triệu đồng.
Đáp án: \(293\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(B{C^2} = A{B^2} + A{C^2} - 2.AB \cdot AC \cdot \cos \widehat {BAC} = 64 + 25 - 2 \cdot 8 \cdot 5 \cdot \cos 60^\circ = 49\).
Suy ra \(BC = 7\).
Ta có nửa chu vi của \(\Delta ABC\) là: \(p = \frac{{5 + 7 + 8}}{2} = 10\).
Diện tích của \(\Delta ABC\) là: \(S = \sqrt {10 \cdot \left( {10 - 8} \right) \cdot \left( {10 - 5} \right) \cdot \left( {10 - 7} \right)} = 10\sqrt 3 \).
Vì \(S = \frac{1}{2}AH \cdot BC\)\( \Rightarrow AH = \frac{{2S}}{{BC}} = \frac{{2 \cdot 10\sqrt 3 }}{7} = \frac{{20\sqrt 3 }}{7} \approx 4,95\).
Đáp án: 4,95.
Lời giải
Đáp án đúng là: C
Tam giác \[ABC\] cân tại \(A\) nên \(\widehat B = \frac{{180^\circ - \widehat A}}{2} = \frac{{180^\circ - 120^\circ }}{2} = 30^\circ \).
Áp dụng định lí côsin trong\(\Delta ABC\), ta có:
\[B{C^2} = A{B^2} + A{C^2} - 2AB \cdot AC\cos 120^\circ \]\[ = {a^2} + {a^2} - 2a \cdot a \cdot \left( { - \frac{1}{2}} \right) = 3{a^2}\].
\( \Rightarrow BC = a\sqrt 3 \)\( \Rightarrow BM = \frac{{2a\sqrt 3 }}{5}\).
Áp dụng định lí côsin trong \(\Delta ABM\), ta có:
\[A{M^2} = A{B^2} + B{M^2} - 2AB.BM.cos30^\circ = {a^2} + {\left( {\frac{{2a\sqrt 3 }}{5}} \right)^2} - 2a \cdot \frac{{2a\sqrt 3 }}{5} \cdot \frac{{\sqrt 3 }}{2} = \frac{{7{a^2}}}{{25}}\].
\[ \Rightarrow AM = \frac{{a\sqrt 7 }}{5}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.