Câu hỏi:

07/08/2025 16 Lưu

Cho \(\Delta ABC,E\) là trung điểm BC, I là trung điểm của AB. Gọi D, I, J, K lần lượt là các điểm thỏa mãn \(\overrightarrow {BE} = 2\overrightarrow {BD} ,\overrightarrow {AJ} = \frac{1}{2}\overrightarrow {JC} ,\overrightarrow {IK} = m\overrightarrow {IJ} \). Tìm m để A, K, D thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có A, K, D thẳng hàng \( \Leftrightarrow \overrightarrow {AD}  = n\overrightarrow {AK}  = n\left( {\overrightarrow {AI}  + \overrightarrow {IK} } \right)\) (1)

Ta có \(\overrightarrow {BE}  = 2\overrightarrow {BD}  = 2\left( {\overrightarrow {BA}  + \overrightarrow {AD} } \right) = 2\overrightarrow {BA}  + 2\overrightarrow {AD} \).

Suy ra \(2\overrightarrow {AD}  = \overrightarrow {BE}  - 2\overrightarrow {BA}  = \overrightarrow {BA}  + \overrightarrow {AE}  - 2\overrightarrow {BA}  = \overrightarrow {AB}  + \overrightarrow {AE} \)

        \( = \overrightarrow {AB}  + \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{3}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \)

        \( = 3\overrightarrow {AI}  + \frac{3}{2}\overrightarrow {AJ}  = 3\overrightarrow {AI}  + \frac{3}{2}\left( {\overrightarrow {AI}  + \overrightarrow {IJ} } \right) = \frac{9}{2}\overrightarrow {AI}  + \frac{3}{2}\overrightarrow {IJ} \).

Mà \(\overrightarrow {IK}  = m\overrightarrow {IJ} \) nên \(2\overrightarrow {AD}  = \frac{9}{2}\overrightarrow {AI}  + \frac{3}{{2m}}\overrightarrow {IK}  \Rightarrow \overrightarrow {AD}  = \frac{9}{4}\overrightarrow {AI}  + \frac{3}{{4m}}\overrightarrow {IK} \) (2)

Từ (1) và (2) \( \Rightarrow \frac{9}{4} = \frac{3}{{4m}} \Leftrightarrow m = \frac{1}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. \(AC = 2AO\) và vectơ \(\overrightarrow {AC} , \overrightarrow {AO} \) là hai vectơ cùng hướng nên \(\overrightarrow {AC}  = 2\overrightarrow {AO} \).

b) Đúng. Theo quy tắc hình bình hành ta có \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \).

Mặt khác \(\overrightarrow {AC}  = 2\overrightarrow {AO} \). Vậy \(\overrightarrow {AB}  + \overrightarrow {AD}  = 2\overrightarrow {AO} \).

c) Đúng. \(O\) là trung điểm của \(AC\) và \(BD\) nên \(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 , \overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0 \).

Vậy \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \).

d) Sai.

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow {GO}  + \overrightarrow {OA}  + \overrightarrow {GO}  + \overrightarrow {OB}  + \overrightarrow {GO}  + \overrightarrow {OC}  + \overrightarrow {GO}  + \overrightarrow {OD} \)

\( = 4\overrightarrow {GO}  + \left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right) = 4\overrightarrow {GO} \).

Nên suy ra \(\left| {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} } \right| = 4\left| {\overrightarrow {GO} } \right| = 4GO\).

Vì hình vuông \(ABCD\) có tâm \(O\) cạnh \(a\), \(G\) là trọng tâm tam giác \(ABC\) nên \(GO = \frac{1}{3}BO = \frac{1}{6}BD = \frac{{a\sqrt 2 }}{6}\).

Vậy \(\left| {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} } \right| = \frac{{2a\sqrt 2 }}{3}\).

Câu 2

Lời giải

Đáp án đúng là: C

Ta có \(\overrightarrow {MN}  = \overrightarrow {ON}  - \overrightarrow {OM}  =  - 4\overrightarrow a  - 3\overrightarrow a  =  - 7\overrightarrow a \).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP