Cho tứ giác \(ABCD\). Gọi \(I,J\) theo thứ tự là trung điểm của \(AB,CD\) và \(IJ = \frac{5}{4}\). Gọi \(M,N\) theo thứ tự là trung điểm của \(BC,AC\). Tính \(\left| {\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CI} } \right|\).
Cho tứ giác \(ABCD\). Gọi \(I,J\) theo thứ tự là trung điểm của \(AB,CD\) và \(IJ = \frac{5}{4}\). Gọi \(M,N\) theo thứ tự là trung điểm của \(BC,AC\). Tính \(\left| {\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CI} } \right|\).
Quảng cáo
Trả lời:

Ta có \(2\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {AC} \) (1), \(2\overrightarrow {BN} = \overrightarrow {BA} + \overrightarrow {BC} \) (2), \(2\overrightarrow {CI} = \overrightarrow {CA} + \overrightarrow {CB} \) (3).
Cộng theo vế (1), (2), (3): \(2\left( {\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CI} } \right) = \left( {\overrightarrow {AB} + \overrightarrow {BA} } \right) + \left( {\overrightarrow {AC} + \overrightarrow {CA} } \right) + \left( {\overrightarrow {BC} + \overrightarrow {CB} } \right) = \vec 0{\rm{. }}\)
Suy ra \(\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CI} = \vec 0\).
Do vậy \(\left| {\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CI} } \right| = 0\).
Đáp án: 0.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. \(AC = 2AO\) và vectơ \(\overrightarrow {AC} , \overrightarrow {AO} \) là hai vectơ cùng hướng nên \(\overrightarrow {AC} = 2\overrightarrow {AO} \).
b) Đúng. Theo quy tắc hình bình hành ta có \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \).
Mặt khác \(\overrightarrow {AC} = 2\overrightarrow {AO} \). Vậy \(\overrightarrow {AB} + \overrightarrow {AD} = 2\overrightarrow {AO} \).
c) Đúng. \(O\) là trung điểm của \(AC\) và \(BD\) nên \(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0 , \overrightarrow {OB} + \overrightarrow {OD} = \overrightarrow 0 \).
Vậy \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \).
d) Sai.
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow {GO} + \overrightarrow {OA} + \overrightarrow {GO} + \overrightarrow {OB} + \overrightarrow {GO} + \overrightarrow {OC} + \overrightarrow {GO} + \overrightarrow {OD} \)
\( = 4\overrightarrow {GO} + \left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = 4\overrightarrow {GO} \).
Nên suy ra \(\left| {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} } \right| = 4\left| {\overrightarrow {GO} } \right| = 4GO\).
Vì hình vuông \(ABCD\) có tâm \(O\) cạnh \(a\), \(G\) là trọng tâm tam giác \(ABC\) nên \(GO = \frac{1}{3}BO = \frac{1}{6}BD = \frac{{a\sqrt 2 }}{6}\).
Vậy \(\left| {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} } \right| = \frac{{2a\sqrt 2 }}{3}\).
Lời giải
Đáp án đúng là: C
Ta có \(\overrightarrow {MN} = \overrightarrow {ON} - \overrightarrow {OM} = - 4\overrightarrow a - 3\overrightarrow a = - 7\overrightarrow a \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.