Câu hỏi:

07/08/2025 6 Lưu

Cho tam giác đều \(ABC\). Tính góc \(\left( {\overrightarrow {AB} ,\;\overrightarrow {BC} } \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

V (ảnh 1)

Dựng vectơ \[\overrightarrow {AA'}  = \overrightarrow {BC} \] khi đó ta có \(\left( {\overrightarrow {AB} ,\;\overrightarrow {BC} } \right) = \left( {\overrightarrow {AB} ,\;\overrightarrow {AA'} } \right) = \widehat {BAA'}\).

Vì \[\overrightarrow {AA'}  = \overrightarrow {BC}  \Rightarrow BC{\rm{//}}AA' \Rightarrow \widehat {CAA'} = \widehat {ACB} = \widehat {BAC}\;\; = 60^\circ \].

Do đó \(\left( {\overrightarrow {AB} ,\;\overrightarrow {BC} } \right) = \left( {\overrightarrow {AB} ,\;\overrightarrow {AA'} } \right) = \widehat {BAA'} = \widehat {BAC}\; + \widehat {CAA'}\; = 60^\circ  + 60^\circ  = 120^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Ta có \(\overrightarrow {CM}  = \overrightarrow {BM}  - \overrightarrow {BC}  = \frac{1}{2}\overrightarrow {BA}  - \overrightarrow {BC} \).

b) Sai. Vì \(G\) là trọng tâm của tam giác \(ACM\) nên

\(3\overrightarrow {BG}  = \overrightarrow {BA}  + \overrightarrow {BM}  + \overrightarrow {BC}  = \overrightarrow {BA}  + \frac{1}{2}\overrightarrow {BA}  + \overrightarrow {BC}  = \frac{3}{2}\overrightarrow {BA}  + \overrightarrow {BC}  \Rightarrow \overrightarrow {BG}  = \frac{1}{2}\overrightarrow {BA}  + \frac{1}{3}\overrightarrow {BC} .\)

c) Đúng. Vì \(ABCD\) là hình chữ nhật nên \(BA \bot BC\), suy ra \(\overrightarrow {BC}  \cdot \overrightarrow {BA}  = 0\).

d) Sai. Ta có \(\overrightarrow {BG}  \cdot \overrightarrow {CM}  = \left( {\frac{1}{2}\overrightarrow {BA}  + \frac{1}{3}\overrightarrow {BC} } \right) \cdot \left( {\frac{1}{2}\overrightarrow {BA}  - \overrightarrow {BC} } \right) = \frac{1}{4}{\overrightarrow {BA} ^2} - \frac{1}{3}\overrightarrow {BA}  \cdot \overrightarrow {BC}  - \frac{1}{3}{\overrightarrow {BC} ^2}\)

\( = \frac{1}{4} \cdot {\left( {4a} \right)^2} - \frac{1}{3} \cdot 0 - \frac{1}{3} \cdot {\left( {3a} \right)^2} = {a^2}.\) (\(BC = AD = 3a\)).

Lời giải

a) Đúng. Ta có \(\overrightarrow {AE}  = \overrightarrow {AB}  + \overrightarrow {BE}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {BC}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \).

b) Sai. \(\overrightarrow {AF}  = \overrightarrow {AB}  + \overrightarrow {BF}  = \overrightarrow {AB}  + \frac{3}{4}\overrightarrow {BD}  = \overrightarrow {AB}  + \frac{3}{4}\left( {\overrightarrow {AD}  - \overrightarrow {AB} } \right) = \frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} .\)

c) Đúng. \(\overrightarrow {EF}  = \overrightarrow {AF}  - \overrightarrow {AE}  = \left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right) - \left( {\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} } \right) = \frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} .\)

d) Đúng. Ta có \(\overrightarrow {AF}  \cdot \overrightarrow {EF}  = \left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right) \cdot \left( {\frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} } \right)\)

                                        \( = \frac{{ - 3}}{{16}}{\overrightarrow {AB} ^2} - \frac{1}{2}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{3}{{16}}{\overrightarrow {AD} ^2} = 0 \Rightarrow AF \bot EF{\rm{. }}\)

Ta có \({\overrightarrow {AF} ^2} = {\left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right)^2} = \frac{1}{{16}}{\overrightarrow {AB} ^2} + \frac{3}{8}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{9}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}\).

\({\overrightarrow {EF} ^2} = {\left( {\frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} } \right)^2} = \frac{9}{{16}}{\overrightarrow {AB} ^2} - \frac{3}{8}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{1}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}.\)

\( \Rightarrow {\overrightarrow {AF} ^2} = {\overrightarrow {EF} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2} \Rightarrow AF = EF\). Vậy tam giác \(AEF\) vuông cân tại \(F\).

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP