Câu hỏi:

07/08/2025 41 Lưu

Cho tam giác \(ABC\)\[BC = a,\,{\rm{ }}CA = b,{\rm{ }}AB = c\]. Tính \(P = \left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) \cdot \overrightarrow {BC} \).

A. \(P = {b^2} - {c^2}\).                                       
B. \(P = \frac{{{c^2} + {b^2}}}{2}\).                                
C. \(P = \frac{{{c^2} + {b^2} + {a^2}}}{3}\).                                                         
D. \(P = \frac{{{c^2} + {b^2} - {a^2}}}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có \(P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) \cdot \overrightarrow {BC} \)\[ = \left( {\overrightarrow {AC}  + \overrightarrow {AB} } \right) \cdot \left( {\overrightarrow {AC}  - \overrightarrow {AB} } \right) = {\overrightarrow {AC} ^2} - {\overrightarrow {AB} ^2} = A{C^2} - A{B^2} = {b^2} - {c^2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(5400\,\,{\rm{(J)}}\).                                      
B. \(4500\,\,{\rm{(J)}}\).     
C. \(1500\,\,{\rm{(J)}}\).     
D. \(450\,{\rm{(J)}}\).

Lời giải

Đáp án đúng là: B

Công sinh bởi lực \(\vec F\) được tính bằng công thức

\(A = \overrightarrow F  \cdot \overrightarrow d  = \left| {\overrightarrow F } \right| \cdot \left| {\overrightarrow d } \right|{\rm{cos}}\left( {\overrightarrow F ,\overrightarrow d } \right) = 90 \cdot 100 \cdot {\rm{cos}}60^\circ  = 4500\,\,\left( {\rm{J}} \right)\).

Vậy công sinh bởi lực \(\vec F\) có độ lớn bằng 4500 (J).

Lời giải

C (ảnh 2)

Dựng hình bình hành \(ABCM.\) Ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB} \).

Suy ra độ lớn của tổng hợp lực tác dụng lên vật là: \[\left| {\overrightarrow F } \right| = \left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {MB} } \right| = MB\].

Xét tam giác \(CMB\) có

\(M{B^2} = M{C^2} + B{C^2} - 2MC \cdot BC \cdot \cos \widehat {MCB} = {50^2} + {30^2} - 2 \cdot 50 \cdot 30 \cdot \cos 120^\circ  = 4900\).

Suy ra \(\left| {\overrightarrow F } \right| = \sqrt {4900}  = 70\) N.

Góc tạo bởi lực \(\vec F\) và phương chuyển động là \(\widehat {BMC}\) với

\(\cos \widehat {BMC} = \frac{{M{B^2} + M{C^2} - B{C^2}}}{{2MB \cdot MC}} = \frac{{{{70}^2} + {{50}^2} - {{30}^2}}}{{2 \cdot 70 \cdot 50}} = \frac{{13}}{{14}}\).

Gọi \(MD\) là quãng đường vật di chuyển, khi đó công sinh bởi lực \(\vec F\) là:

\(A = \overrightarrow F  \cdot \overrightarrow {MD}  = \left| {\overrightarrow F } \right| \cdot \left| {\overrightarrow {MD} } \right| \cdot \cos \widehat {BMC} = 70 \cdot 28 \cdot \frac{{13}}{{14}} = 1820\;\)J.

Đáp án: 1820.

Câu 4

A. \(\alpha = 30 \circ \).                                     
B. \(\alpha = 45 \circ \).                       
C. \(\alpha = 60 \circ \).                                     
D. \(\alpha = 120 \circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP