Câu hỏi:

07/08/2025 56 Lưu

Cho tam giác \(ABC\) có \(AB = 2a,AC = 3a,\,\widehat {BAC} = 60^\circ \). Gọi \(I\) là trung điểm đoạn thẳng \(BC\). Điểm \(J\) thuộc đoạn \(AC\) thỏa mãn \(12AJ = 7AC\).

a) \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = 4{a^2}\).

b) \(\overrightarrow {AI}  = \frac{3}{2}\overrightarrow {AB}  + \frac{3}{2}\overrightarrow {AC} \).

c) \(\overrightarrow {BJ}  =  - \overrightarrow {AB}  + \frac{7}{{12}}\overrightarrow {AC} \).

d) \(AI \bot BJ\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

C (ảnh 1)

a) Sai. \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = AB \cdot AC\cos \widehat {BAC} = 2a \cdot 3a \cdot \cos 60^\circ  = 3{a^2}\).

b) Sai. Do \(I\) là trung điểm \(BC\) nên \(\overrightarrow {AI}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \).

c) Đúng. Vì \(J \in AC\) và \(12AJ = 7AC\) nên \(\overrightarrow {AJ}  = \frac{7}{{12}}\overrightarrow {AC} \).

Khi đó, \(\overrightarrow {BJ}  = \overrightarrow {BA}  + \overrightarrow {AJ}  =  - \overrightarrow {AB}  + \frac{7}{{12}}\overrightarrow {AC} \).

d) Đúng. Ta có \(\overrightarrow {AI}  \cdot \overrightarrow {BJ}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\left( { - \overrightarrow {AB}  + \frac{7}{{12}}\overrightarrow {AC} } \right)\)

\( = \frac{1}{2}\left( { - {{\overrightarrow {AB} }^2} + \frac{7}{{12}}\overrightarrow {AB}  \cdot \overrightarrow {AC}  - \overrightarrow {AB}  \cdot \overrightarrow {AC}  + \frac{7}{{12}}{{\overrightarrow {AC} }^2}} \right)\)

\( = \frac{1}{2}\left( { - 4{a^2} + \frac{7}{{12}} \cdot 3{a^2} - 3{a^2} + \frac{7}{{12}} \cdot 9{a^2}} \right) = 0\).\

Vậy \(AI \bot BJ\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(5400\,\,{\rm{(J)}}\).                                      
B. \(4500\,\,{\rm{(J)}}\).     
C. \(1500\,\,{\rm{(J)}}\).     
D. \(450\,{\rm{(J)}}\).

Lời giải

Đáp án đúng là: B

Công sinh bởi lực \(\vec F\) được tính bằng công thức

\(A = \overrightarrow F  \cdot \overrightarrow d  = \left| {\overrightarrow F } \right| \cdot \left| {\overrightarrow d } \right|{\rm{cos}}\left( {\overrightarrow F ,\overrightarrow d } \right) = 90 \cdot 100 \cdot {\rm{cos}}60^\circ  = 4500\,\,\left( {\rm{J}} \right)\).

Vậy công sinh bởi lực \(\vec F\) có độ lớn bằng 4500 (J).

Lời giải

a) Sai. Người thứ nhất kéo một lực là \[40\sqrt 3 \,\,{\rm{(N)}} \Rightarrow \left| {\overrightarrow {{F_1}} } \right| = 40\sqrt 3 \], người thứ hai kéo một lực là \[80\,\,{\rm{(N)}} \Rightarrow \left| {\overrightarrow {{F_2}} } \right| = 80\].

b) Đúng. Lực tổng hợp, hợp với phương ngang (mặt đường) một góc \(30^\circ \) và phương lực \(\overrightarrow {{F_2}} \) song song mặt đường nên \(\left( {\overrightarrow {{F_2}} ,\overrightarrow F } \right) = 30^\circ \).

c) Đúng. Ta có lực tổng hợp của hai người là \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}} \).

Suy ra độ lớn của \(\overrightarrow F \) là: \(F = \sqrt {{F_1}^2 + {F_2}^2}  = 40\sqrt 7 \,{\rm{(N)}}\).

d) Đúng. Công sinh ra khi kéo vật là

\[A = \overrightarrow F  \cdot \overrightarrow d  = \left| {\overrightarrow F } \right| \cdot \left| {\overrightarrow d } \right| \cdot \cos \left( {\overrightarrow F ,\overrightarrow d } \right) = 40\sqrt 7  \cdot 5 \cdot \cos 30^\circ  = 1000\sqrt {21} \,{\rm{(J)}} = a\sqrt b {\rm{(J)}} \Rightarrow \left\{ \begin{array}{l}a = 1000\\b = 21\end{array} \right.\].

Khi đó \(a + b = 1021\).

Câu 6

A. \(\alpha = 30 \circ \).                                     
B. \(\alpha = 45 \circ \).                       
C. \(\alpha = 60 \circ \).                                     
D. \(\alpha = 120 \circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP