Cho đường tròn tâm \(O\) bán kính \(3cm\) và một điểm \(A\) cách \(O\) là \(5\,\,cm.\) Kẻ tiếp tuyến \(AB\) với đường tròn (\(B\) là tiếp điểm). Độ dài \(AB\) là
Quảng cáo
Trả lời:
Chọn B
Vì \(AB\) là tiếp tuyến và \(B\) là tiếp điểm nên \(OB = R = 3cm;AB \bot OB\) tại \(B\).
Áp dụng định lý Phythagore cho tam giác \(ABO\) vuông tại \(B\) ta được:
\(AB = \sqrt {O{A^2} - O{B^2}} = \sqrt {{5^2} - {3^2}} = 4cm\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Xét \((O)\) có \(OB = OC = OD\) nên \(BO = \frac{{DC}}{2}\) hay \(\Delta BDC\) vuông tại \(B\) suy ra \[BD \bot AC\].
\(\Delta ABD = \Delta CBD\) nên \(DA = DC = 2R\).
Lời giải
Chọn B
Xét \((O)\) có \(MA = MB\) (tính chất hai tiếp tuyến cắt nhau) mà \(\widehat {AMB} = 60^\circ \) nên \(\Delta MAB\) đều suy ra chu vi \(\Delta MAB\) là \(MA + MB + AB = 3AB\) suy ra \(AB = 8cm = MA = MB\).
Lại có \[\widehat {AMO} = \frac{1}{2}\widehat {AMB} = 30^\circ \] (tính chất 2 tiếp tuyến cắt nhau)
Xét tam giác vuông \(MAO\) có \(\tan \widehat {AMO} = \frac{{OA}}{{MA}} \Rightarrow OA = MA.\tan 30^\circ = \frac{{8\sqrt 3 }}{3}\,cm\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.