Câu hỏi:

12/08/2025 13 Lưu

Kẻ tiếp tuyến với đường tròn tại \(C\), tiếp tuyến này cắt đường thẳng \(OA\) tại \(I\). Biết \(OA = R\). Tính \(CI\) theo \(R\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Xét tam giác \(COA\) có \(OC = OA = R\) và \(OC = AC\).

(do \(OCAD\) là hình thoi) nên \(\Delta COA\) là tam giác đều nên \(\widehat {COI} = 60^\circ \).

Xét tam giác vuông \(OCI\) có \(CI = OC.\tan 60^\circ = R\sqrt 3 \). Vậy \(CI = R\sqrt 3 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Xét \((O)\) có \(OB = OC = OD\) nên \(BO = \frac{{DC}}{2}\) hay \(\Delta BDC\) vuông tại \(B\) suy ra \[BD \bot AC\].

\(\Delta ABD = \Delta CBD\) nên \(DA = DC = 2R\).

Lời giải

Chọn B

Xét \((O)\) có \(MA = MB\) (tính chất hai tiếp tuyến cắt nhau) mà \(\widehat {AMB} = 60^\circ \) nên \(\Delta MAB\) đều suy ra chu vi \(\Delta MAB\) là \(MA + MB + AB = 3AB\) suy ra \(AB = 8cm = MA = MB\).

Lại có \[\widehat {AMO} = \frac{1}{2}\widehat {AMB} = 30^\circ \] (tính chất 2 tiếp tuyến cắt nhau)

Xét tam giác vuông \(MAO\) có \(\tan \widehat {AMO} = \frac{{OA}}{{MA}} \Rightarrow OA = MA.\tan 30^\circ = \frac{{8\sqrt 3 }}{3}\,cm\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP