Hai đường tròn \(\left( O \right)\) và \(\left( {O'} \right)\) cắt nhau tại \(A\) và \(B\). Trong các khẳng định sau:
a) \(AB\) vuông góc với \(OO'\);
b) \(AB\) là đường trung trực của \(OO'\);
c) \(A\) và \(B\) luôn nằm trên nửa mặt phẳng đối nhau bở \(OO'\);
d) \(\left( O \right)\) và \(\left( {O'} \right)\) luôn nằm trên hai nửa mặt phẳng đối nhau bờ \(AB\).
Có bao nhiêu khẳng định đúng?
Quảng cáo
Trả lời:
Chọn B
Theo tính chất của đường nối tâm thì \(OO'\) là đường trung trực của \(AB\)
Các khẳng định đúng là: khẳng định a và khẳng định c, khẳng định b sai.
Khẳng định d sai vì có trường hợp \(\left( O \right)\) và \(\left( {O'} \right)\) nằm trên một nửa mặt phẳng bờ \(AB\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Lưu ý: Có cách kẻ tiếp tuyến chung tại \(A\) nữa.
Đây là câu trong đề thi TS tỉnh Bắc Ninh năm 2021-2022.
Ta có \(B \in (O)\), \(C \in (O')\) và \(BC = CM = 4\;{\rm{cm}}\)nên \(C\) là trung điểm của \(BM\).
Lại có \(OB \bot BM\) và \(CO' \bot BC\) (\(BC\) là tiếp tuyến chung ngoài của hai đường tròn)
\( \Rightarrow CO'{\rm{ // }}OB\).
Xét \(\Delta OBM\) có \(C\) là trung điểm của \(BM\) và \(CO\prime {\rm{ // }}OB\)
Suy ra \(O\prime \) là trung điểm của \(OM\).
Do đó \(CO\prime \) là đường trung bình của \(\Delta OBM\).
\( \Rightarrow CO\prime = \frac{1}{2}OB\) hay \(OB = R = 2r\)
Và \(OM = 2OO' = 2(R + r) = 6r\)
Áp dụng định lý Pytago cho \(\Delta OBM\) vuông tại \(B\) có
\(O{B^2} + B{M^2} = O{M^2}\)
\( \Rightarrow {\left( {2r} \right)^2} + {8^2} = {\left( {6r} \right)^2}\)\( \Leftrightarrow 4{r^2} + 64 = 36{r^2}\)
\( \Leftrightarrow 32{r^2} = 64\)\( \Leftrightarrow {r^2} = 2\)
\( \Leftrightarrow r = \sqrt 2 \)
Suy ra \(R + r = 3r = 3\sqrt 2 \left( {{\rm{cm}}} \right)\).
Lời giải
Chọn C
Gọi \(I\) là trung điểm của \(GF\).
Xét tam giác \(AGF\) vuông tại \(A\) có: \(IA = IF = IG\) nên \[\widehat {IAF} = \widehat {IFA}\].
Mà \(\widehat {IFA} = \widehat {CFE}\)
Nên \(\widehat {IAF} = \widehat {CFE}\).
Xét tam giác \(ABC\) vuông tại \(A\) có: \(\widehat C = \widehat {CAE}\).
Mà \(\widehat C + \widehat {CFE} = 90^\circ \) nên \(\widehat {CAE} + \widehat {IAF} = 90^\circ \).
Hay \(EA\) là tiếp tuyến của đường tròn đường kính \(GF\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.