Một mảnh đất có dạng như phần được tô màu xanh trong hình bên cùng với các kích thước (tính bằng mét) được ghi trên đó.
Hãy tìm đơn thức (thu gọn) với hai biến \(x,y\) biểu thị mảnh đất đã cho.
Quảng cáo
Trả lời:

Đáp án đúng là: D
Cách 1.
Diện tích phần mảnh đất hình chữ nhật \(ABCD\) là: \(3x \cdot 3y = 9xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Diện tích phần mảnh đất hình chữ nhật \(EFGC\) là: \(4x \cdot y = 4xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Vậy diện tích phần mảnh đất đã cho là: \(9xy + 4xy = 13xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)
Cách 2.
Chiều dài của hình chữ nhật \(HFGD\)là: \(3y + y = 4y{\rm{ }}\left( {\rm{m}} \right)\).
Diện tích hình chữ nhật \(HFGD\) là: \(4x \cdot 4y = 16xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Chiều rộng của mảnh đất \(HEBA\) là: \(4x - 3x = x{\rm{ }}\left( {\rm{m}} \right)\).
Diện tích hình chữ nhật \(HEBA\) là: \(x \cdot 3y = 3xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Diện tích của mảnh đất đã cho là: \(16xy - 3xy = 13xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Đúng.
Thể tích của bể bơi thứ nhất là: \(1,4 \cdot x \cdot y = 1,4xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
b) Đúng.
Diện tích đáy của bể bơi thứ nhất là: \(x \cdot y = xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Mà diện tích đáy của bê bơi thứ hai gấp 3 lần diện tích đáy của bể bơi thứ nhất.
Do đo, diện tích đáy của bể bơi thứ hai là: \(3xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
c) Sai.
Thể tích của bể bơi thứ hai là: \(1,6 \cdot 3xy = 4,8xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
Vì \(4,8 < 5\) nên \(4,8xy < 5xy\).
Do đó, thể tích của bể bơi thứ hai nhỏ hơn \(5xy{\rm{ }}\left( {{{\rm{m}}^3}} \right).\)
d) Đúng.
Tổng thể tích hai bể bơi là: \(4,8xy + 1,4xy = 6,2xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
Thể tích nước cần bơm đầy hai bể bơi chính bằng tổng thể tích của của hai bể bơi và bằng \(6,2xy{\rm{ }}\left( {{{\rm{m}}^3}} \right).\)
Lời giải
Lời giải
a) Đúng
Ta có \(A = 2{x^2}y + {x^2} + {y^2} + xy - 2{x^2}y\)
\(A = \left( {2{x^2}y - 2{x^2}y} \right) + {x^2} + {y^2} + xy\)
\(A = {x^2} + {y^2} + xy\)
Do đó, thu gọn đa thức \(A\), ta được \(A = {x^2} + xy + {y^2}\).
b) Sai
Vì thu gọn \(A = {x^2} + xy + {y^2}\) nên đa thức \(A\) có bậc là 2.
c) Sai
Ta có \(C = A + B\) nên \(C = {x^2} + xy + {y^2} - 3xy = {x^2} - 2xy + {y^2}\).
d) Đúng
Thay \(x = 24;y = 25\) vào \(C = {x^2} - 2xy + {y^2}\), ta được:
\(C = {24^2} - 2 \cdot 24 \cdot 25 + {25^2} = 576 - 1{\rm{ }}200 + 625 = 1{\rm{ }}201 - 1{\rm{ }}200 = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.