Câu hỏi:

16/08/2025 108 Lưu

Một mảnh vườn hình chữ nhật với chiều rộng là \(x{\rm{ }}\left( {\rm{m}} \right)\), chiều dài là \(y{\rm{ }}\left( {\rm{m}} \right)\) (với \(y > x > 0\)). Sau khi mở rộng mảnh vườn, ta có chiều rộng mới gấp hai lần chiều rộng ban đầu, chiều dài mới bằng \(\frac{3}{2}\) chiều dài ban đầu của mảnh vườn.

a) Diện tích ban đầu của mảnh vườn là \(xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

b) Chiều rộng mới của mảnh vườn khi mở rộng là \(2x{\rm{ }}\left( {\rm{m}} \right),\) chiều dài mới là \(\frac{3}{2}y{\rm{ }}\left( {\rm{m}} \right)\).

c) Diện tích của mảnh vườn sau khi mở rộng là \(3xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

d) Diện tích phần được mở rộng thêm của mảnh vườn lớn hơn \(2xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) Đúng.

Diện tích ban đầu của mảnh vườn hình chữ nhật là: \(x.y = xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

b) Đúng.

Vì khi mở rộng mảnh vườn, chiều rộng gấp hai lần chiều rộng ban đầu, chiều dài mới bằng \(\frac{3}{2}\) chiều dài ban đầu của mảnh vườn.

Do đó, chiều rộng mới của mảnh vườn khi mở rộng là \(2x{\rm{ }}\left( {\rm{m}} \right),\) chiều dài mới là \(\frac{3}{2}y{\rm{ }}\left( {\rm{m}} \right)\).

c) Đúng.

Diện tích của mảnh vườn sau khi được mở rộng là: \(2x \cdot \frac{3}{2}y = 3xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

d) Sai

Diện tích phần đất được mở rộng thêm của mảnh vườn là: \(3xy - xy = 2xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Vậy diện tích phần được mở rộng thêm của mảnh vườn là \(2xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(9xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)

B. \(16xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)

C. \(4xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)

D. \(13xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)

Lời giải

Đáp án đúng là: D

Cách 1.

Diện tích phần mảnh đất hình chữ nhật \(ABCD\) là: \(3x \cdot 3y = 9xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Diện tích phần mảnh đất hình chữ nhật \(EFGC\) là: \(4x \cdot y = 4xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Vậy diện tích phần mảnh đất đã cho là: \(9xy + 4xy = 13xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)

Cách 2.

Chiều dài của hình chữ nhật \(HFGD\)là: \(3y + y = 4y{\rm{ }}\left( {\rm{m}} \right)\).

Diện tích hình chữ nhật \(HFGD\) là: \(4x \cdot 4y = 16xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Chiều rộng của mảnh đất \(HEBA\) là: \(4x - 3x = x{\rm{ }}\left( {\rm{m}} \right)\).

Diện tích hình chữ nhật \(HEBA\) là: \(x \cdot 3y = 3xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Diện tích của mảnh đất đã cho là: \(16xy - 3xy = 13xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)

Lời giải

Lời giải

Đáp án: 0

Ta có: \(P = xyz + {x^2}{y^2}{z^2} + {x^3}{y^3}{z^3} + ... + {x^{2019}}{y^{2019}}{z^{2019}} + {x^{2020}}{y^{2020}}{z^{2020}}\).

Thay \(x = 1;y = 1;z = - 1,\) ta được:

\(P = 1 \cdot 1 \cdot \left( { - 1} \right) + {1^2} \cdot {1^2} \cdot {\left( { - 1} \right)^2} + {1^3}{.1^3}.{\left( { - 1} \right)^3} + ... + {1^{2019}} \cdot {1^{2019}} \cdot {\left( { - 1} \right)^{2019}} + {1^{2020}} \cdot {1^{2020}} \cdot {\left( { - 1} \right)^{2020}}\)

\(P = - 1 + 1 + \left( { - 1} \right) + ... + \left( { - 1} \right) + 1\)

Nhận thấy đa thức \(P\) chứa 2020 hạng tử, trong đó có \(1010\) hạng tử mũ chẵn và \(1010\) hạng tử mũ lẻ.

Do đó, \(P = - 1 + 1 + \left( { - 1} \right) + ... + \left( { - 1} \right) + 1\) có 1010 số hạng \( - 1\) và 1010 số hạng 1.

Suy ra \(P = - 1 + 1 + \left( { - 1} \right) + ... + \left( { - 1} \right) + 1 = - 1 \cdot 1010 + 1 \cdot 1010 = - 1010 + 1010 = 0\).

Vậy với \(x = 1;y = 1;z = - 1\) thì \(P = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP