Câu hỏi:

18/08/2025 100 Lưu

A. TRẮC NGHIỆM

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu thí sinh chỉ chọn một phương án.

Phương trình \(3x - 9 = 0\) có nghiệm là

A. \(x = 9\).

B. \(x = - 3\).

C. \(x = 3\).

D. \(x = - 9\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giải phương trình:

\(3x - 9 = 0\)

\(3x = 9\)

\[x = 3\].

Vậy phương trình đã cho có nghiệm là \(x = 3\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) (giây) là thời gian di chuyển của mỗi người \(\left( {0 < x < 500} \right).\)

Quãng đường người thứ nhất đi được là: \(BE = 2x{\rm{\;(m)}}{\rm{.}}\)

Quãng đường người thứ hai đi được là: \(AD = 1,5x{\rm{\;(m)}}{\rm{.}}\)

Ta có \(AE = AB - BE = 1\,\,000 - 2x{\rm{\;(m)}}{\rm{.}}\)

Khoảng cách giữa hai người là nhỏ nhất khi DE ngắn nhất.

Xét \(\Delta ADE\) vuông tại \(A,\) theo định lí Pythagore, ta có:

\(D{E^2} = A{D^2} + A{E^2} = {\left( {1,5x} \right)^2} + {\left( {1\,\,000 - 2x} \right)^2} = 2,25{x^2} + 4{x^2} - 4\,\,000x + 1\,\,000\,\,000\)

 \( = 6,25{x^2} - 4\,\,000x + 1\,\,000\,\,000 = 6,25\left( {{x^2} - 640x + 102\,\,400} \right) + 360\,\,000\)

 \( = 6,25{\left( {x - 320} \right)^2} + 360\,\,000.\)

Ta có: \({\left( {x - 320} \right)^2} \ge 0\) với mọi \(x\) nên \(6,25{\left( {x - 320} \right)^2} + 360\,\,000 \ge 360\,\,000.\)

Do đó \(D{E^2} \ge 360\,\,000\) nên \(DE \ge 600\).

Dấu “=” xảy ra khi \[{\left( {x - 320} \right)^2} = 0\] hay \(x = 320.\)

Vậy sau \[320\] giây thì khoảng cách giữa hai người là nhỏ nhất.

Lời giải

Gọi vận tốc của xe tải là \[x\] km/h (điều kiện \(x > 0).\)

Vận tốc của xe con là \(x + 10\) (km/h).

Thời gian đi từ \[A\] đến \[B\] của xe tải, xe con lần lượt là \(\frac{{200}}{x}\) giờ và \(\frac{{200}}{{x + 10}}\) giờ.

Vì xe tải xuất phát trước xe con 40 phút \( = \frac{2}{3}\) giờ và hai xe đến \[B\] cùng lúc nên ta có phương trình \(\frac{{200}}{x} - \frac{{200}}{{x + 10}} = \frac{2}{3}\).

Giải phương trình:

\(\frac{{200}}{x} - \frac{{200}}{{x + 10}} = \frac{2}{3}\)

\(\frac{{200\left( {x + 10} \right) - 200x}}{{x\left( {x + 10} \right)}} = \frac{2}{3}\)

\(\frac{{200x + 2\,\,000 - 200x}}{{x\left( {x + 10} \right)}} = \frac{2}{3}\)

\(\frac{{2\,\,000}}{{x\left( {x + 10} \right)}} = \frac{2}{3}\)

\(2x\left( {x + 10} \right) = 3 \cdot 2\,\,000\)

\({x^2} + 10x - 3000 = 0.\)

Giải phương trình được \({x_1} = - 60\) (không thỏa mãn), \({x_2} = 50\)(thỏa mãn).

Thời gian xe tải đi từ \[A\] đến \[B\] \(\frac{{200}}{{50}} = 4\) giờ.

Vậy hai xe đến \[B\] lúc 12 giờ.

Đáp án: 12.

Câu 4

A. \(\left[ { - 3;1} \right]\).

B. \(\left\{ { - 3;1} \right\}\).

C. \(\left[ { - 3;1} \right)\).

D. \(\left( { - 3;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 13 cm.

B. \(\frac{{13}}{2}\;{\rm{cm}}\).

C. \(\frac{{13\sqrt 2 }}{2}\;{\rm{cm}}\).

D. \(\frac{{5\sqrt 2 }}{2}\;{\rm{cm}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP