Câu hỏi:

27/09/2025 5 Lưu

Ông Nam cần xây dựng một bể nước mưa có thể tích \(V = 8\left( {{m^3}} \right)\) dạng hình hộp chữ nhật với chiều dài gấp \(\frac{4}{3}\) lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là 980.000đ/m2 và ở nắp để hở một khoảng hình vuông có diện tích bằng \(\frac{2}{9}\) diện tích nắp bể. Tính chi phí thấp nhất      mà ông Nam phải chi trả (làm tròn đến hàng triệu đồng).

Tính chi phí thấp nhất      mà ông Nam phải chi trả (làm tròn đến hàng triệu đồng). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi chiều rộng của bể là \(3x{\rm{ }}\left( m \right)\). Ta có chiều dài bể là \(4x{\rm{ }}(m)\) và chiều cao của bể là \(\frac{2}{{3{x^2}}}{\rm{ }}\left( m \right)\)

Khi đó tổng diện tích bề mặt xây là:

\(T = \left( {3x + 4x} \right).2.\frac{2}{{3{x^2}}} + 2.3x.4x - \frac{2}{9}.3x.4x = \frac{{28}}{{3{x^2}}} + \frac{{64{x^2}}}{3} \ge 2.\sqrt {\frac{{28}}{{3{x^2}}}.\frac{{64{x^2}}}{3}}  = \frac{{32\sqrt 7 }}{3}{\rm{ }}\left( {{m^2}} \right)\).

Chi phí \(C\) (tính theo đồng) xây dựng là: \(C = T.980000 \ge \frac{{32\sqrt 7 }}{3}.980000 \approx 27657000\) (đồng).

Vậy chi phí thấp nhất mà ông Nam phải chi trả là \(28\) triệu đồng.

Đáp án: 28.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Vì từ đồ thị của hàm số \(y = f'\left( x \right)\) ta thấy \(f'\left( x \right) \ge 0\) với \(\forall x \ge 1\) nên hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\).

b) Sai. Vì từ đồ thị của hàm số \(y = f'\left( x \right)\) ta thấy \(f'\left( x \right)\) chỉ đổi dấu một lần qua \(x = 1\) nên hàm số có một điểm cực trị.

c) Sai. Từ đồ thị ta có hàm số \(f'\left( x \right)\) có dạng: \(f'\left( x \right) = a{\left( {x + 2} \right)^2}\left( {x - 1} \right)\).

Đồ thị hàm số \(y = f'\left( x \right)\) đi qua \(\left( {0; - 4} \right)\) nên: \( - 4 = a{\left( {0 + 2} \right)^2}\left( {0 - 1} \right) \Leftrightarrow a = 1\).

Vậy \(f'\left( x \right) = {\left( {x + 2} \right)^2}\left( {x - 1} \right) \Rightarrow f'\left( 2 \right) = {\left( {2 + 2} \right)^2}\left( {2 - 1} \right) = 16\).

d) Đúng. Ta có: \(g'\left( x \right) = f'\left( x \right) - x + 1 = 0 \Leftrightarrow f'\left( x \right) = x - 1\).

Vẽ đường thẳng \(y = x - 1\) trên cùng hệ trục tọa độ với đồ thị hàm số \(y = f'\left( x \right)\).

Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\).  b) Hàm số \(y = f\left( x \right)\) có hai điểm cực trị. (ảnh 2)

Khi đó: \(f'\left( x \right) = x - 1 \Leftrightarrow \left[ \begin{array}{l}x =  - 3\\x =  - 1\\x = 1\end{array} \right.\).

 Bảng biến thiên của hàm số \(g\left( x \right)\).

Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\).  b) Hàm số \(y = f\left( x \right)\) có hai điểm cực trị. (ảnh 3)

Hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - 3; - 1} \right)\) nên \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - \frac{5}{2}; - \frac{3}{2}} \right)\).

Lời giải

Ta có \(v = S'\left( t \right) = 12t - 3{t^2}\) suy ra \(v'\left( t \right) = 12 - 6t\) nên \(v'\left( t \right) = 0 \Leftrightarrow t = 2\).

Bảng biến thiên:

Một chất điểm chuyển động theo quy luật \(S\left( t \right) = 6{t^2} - {t^3}\). Vận tốc \(v\)(m/s) của chuyển động đạt giá trị lớn nhất tại thời điểm \(t\)(s) bằng bao nhiêu giây? (ảnh 1)

Do vậy \({v_{\max }} = 12\,\left( {m/s} \right)\) tại \(t = 2\,\left( s \right)\).

Đáp án: 2.

Câu 4

A. \(2\).                      
B. \(1\).                    
C. \(3\).                           
D. \(0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(2\).                      
B. \(4\).                    
C. \(3\).                           
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - \infty ; - 1} \right)\).            
B. \(\left( { - 1;0} \right)\).            
C. \(\left( { - 1;1} \right)\).                    
D. \(\left( {0;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP