Câu hỏi:

27/09/2025 3 Lưu

Một con cá hồi bơi ngược dòng (từ nơi sinh sống) vượt khoảng cách \[300km\]để tới nơi sinh sản. Vận tốc dòng nước là \[6km/h\]. Giả sử vận tốc bơi của cá khi nước đứng yên là \[v{\rm{ }}km/h\] thì năng lượng tiêu hao của cả trong \(t\) giờ cho bởi công thức \(E\left( v \right) = c{v^3}t\) trong đó \(c\) là hàng số cho trước. \(E\) tính hằng Jun. Tình vận tốc bơi của cả khi nước đứng yên, để năng lượng của cả tiêu hao ít nhất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo đề bài, vận tốc của cá khi bơi trên sông là \(v - 6\), khi đó thời gian để cá bơi đến nơi sinh sản là \(t = \frac{{300}}{{v - 6}}\).

Khi đó, \(E\left( v \right) = c{v^3}\frac{{300}}{{v - 6}}\) với \(v > 6\). Đặt \(x = v - 6\).

Bài năng lượng tiêu hao của cá được tính bởi hàm số:

\[f\left( x \right) = 300c\frac{{{{\left( {x + 6} \right)}^3}}}{x} = 300c\left( {{x^2} + 18x + 108 + \frac{{216}}{x}} \right)\] với \(x > 0\).

Ta có: \[f'\left( x \right) = 300c\left( {2x + 18 - \frac{{216}}{{{x^2}}}} \right) = 0 \Leftrightarrow 2{x^3} + 18{x^2} - 216 = 0 \Rightarrow x = 3\].

Bảng biến thiên:

Tình vận tốc bơi của cả khi nước đứng yên, để năng lượng của cả tiêu hao ít nhất? (ảnh 1)

Vậy \(\mathop {\min }\limits_{x \in \left( {0; + \infty } \right)} f\left( x \right) = f\left( 3 \right)\) hay khi vận tốc của cá khi nước đứng yên là \(v = 9km/h\) thì cá ít tốn năng lượng nhất.

Đáp án: 9

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Vì từ đồ thị của hàm số \(y = f'\left( x \right)\) ta thấy \(f'\left( x \right) \ge 0\) với \(\forall x \ge 1\) nên hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\).

b) Sai. Vì từ đồ thị của hàm số \(y = f'\left( x \right)\) ta thấy \(f'\left( x \right)\) chỉ đổi dấu một lần qua \(x = 1\) nên hàm số có một điểm cực trị.

c) Sai. Từ đồ thị ta có hàm số \(f'\left( x \right)\) có dạng: \(f'\left( x \right) = a{\left( {x + 2} \right)^2}\left( {x - 1} \right)\).

Đồ thị hàm số \(y = f'\left( x \right)\) đi qua \(\left( {0; - 4} \right)\) nên: \( - 4 = a{\left( {0 + 2} \right)^2}\left( {0 - 1} \right) \Leftrightarrow a = 1\).

Vậy \(f'\left( x \right) = {\left( {x + 2} \right)^2}\left( {x - 1} \right) \Rightarrow f'\left( 2 \right) = {\left( {2 + 2} \right)^2}\left( {2 - 1} \right) = 16\).

d) Đúng. Ta có: \(g'\left( x \right) = f'\left( x \right) - x + 1 = 0 \Leftrightarrow f'\left( x \right) = x - 1\).

Vẽ đường thẳng \(y = x - 1\) trên cùng hệ trục tọa độ với đồ thị hàm số \(y = f'\left( x \right)\).

Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\).  b) Hàm số \(y = f\left( x \right)\) có hai điểm cực trị. (ảnh 2)

Khi đó: \(f'\left( x \right) = x - 1 \Leftrightarrow \left[ \begin{array}{l}x =  - 3\\x =  - 1\\x = 1\end{array} \right.\).

 Bảng biến thiên của hàm số \(g\left( x \right)\).

Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\).  b) Hàm số \(y = f\left( x \right)\) có hai điểm cực trị. (ảnh 3)

Hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - 3; - 1} \right)\) nên \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - \frac{5}{2}; - \frac{3}{2}} \right)\).

Lời giải

Ta có \(v = S'\left( t \right) = 12t - 3{t^2}\) suy ra \(v'\left( t \right) = 12 - 6t\) nên \(v'\left( t \right) = 0 \Leftrightarrow t = 2\).

Bảng biến thiên:

Một chất điểm chuyển động theo quy luật \(S\left( t \right) = 6{t^2} - {t^3}\). Vận tốc \(v\)(m/s) của chuyển động đạt giá trị lớn nhất tại thời điểm \(t\)(s) bằng bao nhiêu giây? (ảnh 1)

Do vậy \({v_{\max }} = 12\,\left( {m/s} \right)\) tại \(t = 2\,\left( s \right)\).

Đáp án: 2.

Câu 5

A. \(2\).                      
B. \(1\).                    
C. \(3\).                           
D. \(0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2\).                      
B. \(4\).                    
C. \(3\).                           
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( { - \infty ; - 1} \right)\).            
B. \(\left( { - 1;0} \right)\).            
C. \(\left( { - 1;1} \right)\).                    
D. \(\left( {0;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP