Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên đoạn \(\left[ { - 4;5} \right]\), có bảng biến thiên
Gọi \(M,\,N\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) xác định trên đoạn \(\left[ { - 4;5} \right]\). Tính \(M + N\)?
![Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên đoạn \(\left[ { - 4;5} \right]\), có bảng biến thiên G (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/7-1759147293.png)
Gọi \(M,\,N\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) xác định trên đoạn \(\left[ { - 4;5} \right]\). Tính \(M + N\)?
Quảng cáo
Trả lời:

Ta có \(M + N = \frac{{46}}{3} - \frac{{62}}{3} = - \frac{{16}}{3}.\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
TXĐ: \[D = \mathbb{R}\]
Có \( - 1 \le \sin 2025x \le 1 \Leftrightarrow - 3 \le 3\sin 2025x \le 3 \Leftrightarrow 2 \le 3\sin 2025x + 5 \le 8\)
Suy ra: \(\mathop {{\rm{max}}}\limits_\mathbb{R} y = 8 \Leftrightarrow \sin 2025x = 1 \Leftrightarrow x = \frac{\pi }{{4050}} + \frac{{k2\pi }}{{2025}}\).
Lời giải
a. S |
b. Đ |
c. Đ |
d. Đ |
a) Khi \(m = 0\) thì giá trị nhỏ nhất của hàm số trên khoảng \(\left( {0; + \infty } \right)\) bằng \(2\).
Thay \(m = 0\)vào \(y = \frac{{{x^2} + mx + 1}}{{x + m}}\), ta có \(y = \frac{{{x^2} + 1}}{x} \Rightarrow y' = \frac{{{x^2} - 1}}{{{x^2}}} = 0 \Leftrightarrow {x^2} - 1 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1 \notin \left( {0; + \infty } \right)\end{array} \right.\).
b) Ta có \(y = \frac{{{x^2} + mx + 1}}{{x + m}} \Rightarrow y' = \frac{{{x^2} + 2mx + {m^2} - 1}}{{{{(x + m)}^2}}}\).
\( + y' = 0\)\( \Leftrightarrow {x^2} + 2mx + {m^2} - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - m - 1;\,(\,x \ne - m)\\x = - m + 1;\,(\,x \ne - m)\end{array} \right.\).
\( \Rightarrow y' = 0\) luôn có 2 nghiệm phân biệt thỏa mãn \(x \ne - m,\,\,\forall m\). Vậy hàm số luôn có 2 cực trị.
c) \( + y' = 0\)\( \Leftrightarrow {x^2} + 2mx + {m^2} - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - m - 1\\x = - m + 1\end{array} \right.\).
Ta có bảng biến thiên:
Từ bảng biến thiên ta có: \(\mathop {max}\limits_{\left( { - \infty ; - m} \right)} y = - 2 - m\,\,;\,\,\,\,\,\mathop {\min }\limits_{\left( { - m; + \infty } \right)} y = 2 - m \Rightarrow \mathop {\min }\limits_{\left( { - m; + \infty } \right)} y - \mathop {{\mathop{\rm m}\nolimits} ax}\limits_{\left( { - \infty ; - m} \right)} y = 4\).
d) Khi \(m = - 3\)thay vào \(y = \frac{{{x^2} + mx + 1}}{{x + m}}\), ta có \(y = \frac{{{x^2} - 3x + 1}}{{x - 3}}\).
+ Hàm số \(y = \frac{{{x^2} - 3x + 1}}{{x - 3}}\) là hàm phân thức hữu tỉ, liên tục trên các khoảng \(\left( { - \infty ;3} \right)\) và \(\left( {3; + \infty } \right)\).
Mặt khác \(\left[ { - 1;2} \right] \subset \left( { - \infty ;3} \right) \Rightarrow \)hàm số liên tục trên đoạn \(\left[ { - 1;2} \right]\).
+ Ta có \(y' = \frac{{{x^2} - 6x + 8}}{{{{(x - 3)}^2}}} > 0\,\,\forall x \in \left( { - 1;2} \right)\) và \(y(2) = 1\).
Vì hàm số tăng trên \(\left( { - 1;2} \right)\) nên hàm số đạt giá trị lớn nhất \(\mathop {max}\limits_{\left[ { - 1;2} \right]} y = y(2) = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.