Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(G\left( x \right) = 0,035{x^2}\left( {15 - x} \right)\), trong đó \(x\) là liều lượng thuốc được tiêm cho bệnh nhân (\(x\) được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.

Quảng cáo
Trả lời:
Đáp số: 10
Điều kiện: \(x \in \left[ {1;15} \right]\) (vì độ giảm huyết áp không thể là số âm)
\(\begin{array}{l}G'\left( x \right) = 0,035\left[ {2x\left( {15 - x} \right) - {x^2}} \right] = 0,105x\left( {10 - x} \right)\\ \Rightarrow G'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \notin \left[ {1;15} \right]\\x = 10 \in \left[ {1;15} \right]\end{array} \right.\end{array}\)
Ta có:
\(\begin{array}{l}G\left( 1 \right) = \frac{{49}}{{100}} = 0,49.\\G\left( {10} \right) = \frac{{35}}{2} = 17,5.\\G\left( {15} \right) = 0.\end{array}\).
Vậy huyết áp bệnh nhân giảm nhiều nhất khi tiêm cho bệnh nhân liều \(x = 10\) miligam.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Dựa vào đồ thị hàm số suy ra
a) \(m = - 4\).
b) \(M = 0\).
c)\(M + m = 0 + ( - 4) = - 4\).
d) Với \(\forall x \in \left[ { - 1\,;\, + \infty } \right)\), ta có: \(f\left( x \right) \le 0 \Rightarrow f\left( x \right) + 4 \le 4\) và \(f\left( x \right) + 4 = 4 \Leftrightarrow f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 2\end{array} \right.\)
Vậy, giá trị lớn nhất của hàm số \(y = f\left( x \right) + 4\) trên nửa khoảng \(\left[ { - 1\,;\, + \infty } \right)\) là \(4\).
Câu 2
Lời giải
TXĐ: \[D = \mathbb{R}\]
Có \( - 1 \le \sin 2025x \le 1 \Leftrightarrow - 3 \le 3\sin 2025x \le 3 \Leftrightarrow 2 \le 3\sin 2025x + 5 \le 8\)
Suy ra: \(\mathop {{\rm{max}}}\limits_\mathbb{R} y = 8 \Leftrightarrow \sin 2025x = 1 \Leftrightarrow x = \frac{\pi }{{4050}} + \frac{{k2\pi }}{{2025}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) có đồ thị bên dưới. Gọi \[M,{\rm{ }}m\] lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \[\left[ {1\,;\,3} \right]\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/13-1759147890.png)