Một nhóm bạn đi Picnic muốn cắm trại qua đêm. Biết trại cắm là một hình chóp tam giác đỉnh \(S\) cách đều các chân trại \(A,B,C\) một đoạn bằng \(3m\). Biết đáy trại là một tam giác vuông tại \(A\) và \(AB = 2m\). Nhóm muốn cắm trại sao cho thể tích của trại là lớn nhất cho không gian thoải mái. Khi đó độ dài \(AC\) bằng bao nhiêu?
Quảng cáo
Trả lời:
Gọi \(H\) là trung điểm \(BC\) suy ra \(H\) là tâm ngoại tiếp tam giác \(ABC\). Do \(SA = SB = SC\) nên ta có \(SH \bot \left( {ABC} \right)\).

Đặt \(AC = x\). Ta có
\(BC = \sqrt {A{C^2} + A{B^2}} = \sqrt {{x^2} + 4} \).
Trong tam giác \(SBH\) ta có \(SH = \sqrt {S{B^2} - B{H^2}} = \frac{{\sqrt {32 - {x^2}} }}{2}\),\(0 < x < 4\sqrt 2 \)
Thể tích của lều
\(V = \frac{1}{3}.SH.{S_{ABC}} = \frac{1}{3}.\frac{{\sqrt {32 - {x^2}} }}{2}.\frac{1}{2}.2.x = \frac{1}{6}x.\sqrt {32 - {x^2}} \).
Xét hàm số \(f\left( x \right) = x.\sqrt {32 - {x^2}} \)ta có \(f'\left( x \right) = \sqrt {32 - {x^2}} - \frac{{{x^2}}}{{\sqrt {32 - {x^2}} }}\)
\(f'\left( x \right) = 0 \Leftrightarrow 32 - {x^2} = {x^2} \Rightarrow x = 4\). Ta có bảng biến thiên

Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Dựa vào đồ thị hàm số suy ra
a) \(m = - 4\).
b) \(M = 0\).
c)\(M + m = 0 + ( - 4) = - 4\).
d) Với \(\forall x \in \left[ { - 1\,;\, + \infty } \right)\), ta có: \(f\left( x \right) \le 0 \Rightarrow f\left( x \right) + 4 \le 4\) và \(f\left( x \right) + 4 = 4 \Leftrightarrow f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 2\end{array} \right.\)
Vậy, giá trị lớn nhất của hàm số \(y = f\left( x \right) + 4\) trên nửa khoảng \(\left[ { - 1\,;\, + \infty } \right)\) là \(4\).
Câu 2
Lời giải
TXĐ: \[D = \mathbb{R}\]
Có \( - 1 \le \sin 2025x \le 1 \Leftrightarrow - 3 \le 3\sin 2025x \le 3 \Leftrightarrow 2 \le 3\sin 2025x + 5 \le 8\)
Suy ra: \(\mathop {{\rm{max}}}\limits_\mathbb{R} y = 8 \Leftrightarrow \sin 2025x = 1 \Leftrightarrow x = \frac{\pi }{{4050}} + \frac{{k2\pi }}{{2025}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) có đồ thị bên dưới. Gọi \[M,{\rm{ }}m\] lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \[\left[ {1\,;\,3} \right]\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/13-1759147890.png)