Câu hỏi:

29/09/2025 9 Lưu

Người ta muốn xây một cái bể hình hộp đứng có thể tích \(V = 18\,\,\left( {{m^3}} \right)\), biết đáy bể là hình chữ nhật có chiều dài gấp \(3\) lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao \(h\) bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất?.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp số: \(1,5\).

Gọi \(x\)\(\left( {x > 0} \right)\) là chiều rộng hình chữ nhật đáy bể, suy ra chiều dài hình chữ nhật đáy bể là \(3x.\)

\(V = h.x.3x = h.3{x^2} = 18\) \( \Rightarrow h = \frac{{18}}{{3{x^2}}} = \frac{6}{{{x^2}}}\).

Gọi \(P\) là diện tích xung quanh cộng với diện tích một đáy bể của hình hộp chữ nhật.

Nguyên vật liệu ít nhất khi \(P\) nhỏ nhất.

\(P = 2hx + 2.h.3x + 3{x^2} = 2.\frac{6}{{{x^2}}}.x + 2.\frac{6}{{{x^2}}}.3x + 3{x^2} = \frac{{48}}{x} + 3{x^2}.\)

Đặt \(f\left( x \right) = \frac{{48}}{x} + 3{x^2}\), \(\left( {x > 0} \right)\).

Ta có hàm số \(f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\) và \(f'\left( x \right) = \frac{{ - 48}}{{{x^2}}} + 6x\),\(f'\left( x \right) = 0 \Leftrightarrow \frac{{ - 48}}{{{x^2}}} + 6x = 0 \Leftrightarrow {x^3} = 8 \Leftrightarrow x = 2\).

Bảng biến thiên:

Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất?.  (ảnh 1)

Suy ra vật liệu ít nhất khi \(h = \frac{6}{{{x^2}}} = \frac{6}{4} = \frac{3}{2}\left( m \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(6080\).                
B. \(8\).                    
C. \(5\).                           
D. \(2\).

Lời giải

TXĐ: \[D = \mathbb{R}\]

Có \( - 1 \le \sin 2025x \le 1 \Leftrightarrow  - 3 \le 3\sin 2025x \le 3 \Leftrightarrow 2 \le 3\sin 2025x + 5 \le 8\)

Suy ra: \(\mathop {{\rm{max}}}\limits_\mathbb{R} y = 8 \Leftrightarrow \sin 2025x = 1 \Leftrightarrow x = \frac{\pi }{{4050}} + \frac{{k2\pi }}{{2025}}\).

Lời giải

a. S

b. Đ

c. Đ

d. Đ

a)  Khi \(m = 0\) thì giá trị nhỏ nhất của hàm số trên khoảng \(\left( {0; + \infty } \right)\) bằng \(2\).

Thay \(m = 0\)vào \(y = \frac{{{x^2} + mx + 1}}{{x + m}}\), ta có \(y = \frac{{{x^2} + 1}}{x} \Rightarrow y' = \frac{{{x^2} - 1}}{{{x^2}}} = 0 \Leftrightarrow {x^2} - 1 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1 \notin \left( {0; + \infty } \right)\end{array} \right.\).

Cho hàm số \(y = f(x) = \frac{{{x^2} + mx + 1}}{{x + m}}\).  a)    Khi \(m = 0\), ta có \(\mathop {\min }\limits_{\left( {0; + \infty } \right)} y =  - 2\). (ảnh 1)

            b)  Ta có \(y = \frac{{{x^2} + mx + 1}}{{x + m}} \Rightarrow y' = \frac{{{x^2} + 2mx + {m^2} - 1}}{{{{(x + m)}^2}}}\).

\( + y' = 0\)\( \Leftrightarrow {x^2} + 2mx + {m^2} - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - m - 1;\,(\,x \ne  - m)\\x =  - m + 1;\,(\,x \ne  - m)\end{array} \right.\).

 \( \Rightarrow y' = 0\) luôn có 2 nghiệm phân biệt thỏa mãn \(x \ne  - m,\,\,\forall m\). Vậy hàm số luôn có 2 cực trị.

c) \( + y' = 0\)\( \Leftrightarrow {x^2} + 2mx + {m^2} - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - m - 1\\x =  - m + 1\end{array} \right.\).

Ta có bảng biến thiên:

Cho hàm số \(y = f(x) = \frac{{{x^2} + mx + 1}}{{x + m}}\).  a)    Khi \(m = 0\), ta có \(\mathop {\min }\limits_{\left( {0; + \infty } \right)} y =  - 2\). (ảnh 2)

Từ bảng biến thiên ta có: \(\mathop {max}\limits_{\left( { - \infty ; - m} \right)} y =  - 2 - m\,\,;\,\,\,\,\,\mathop {\min }\limits_{\left( { - m; + \infty } \right)} y = 2 - m \Rightarrow \mathop {\min }\limits_{\left( { - m; + \infty } \right)} y - \mathop {{\mathop{\rm m}\nolimits} ax}\limits_{\left( { - \infty ; - m} \right)} y = 4\).

d) Khi \(m =  - 3\)thay vào \(y = \frac{{{x^2} + mx + 1}}{{x + m}}\), ta có \(y = \frac{{{x^2} - 3x + 1}}{{x - 3}}\).

            + Hàm số \(y = \frac{{{x^2} - 3x + 1}}{{x - 3}}\) là hàm phân thức hữu tỉ, liên tục trên các khoảng \(\left( { - \infty ;3} \right)\) và \(\left( {3; + \infty } \right)\).

            Mặt khác \(\left[ { - 1;2} \right] \subset \left( { - \infty ;3} \right) \Rightarrow \)hàm số liên tục trên đoạn \(\left[ { - 1;2} \right]\).

            + Ta có \(y' = \frac{{{x^2} - 6x + 8}}{{{{(x - 3)}^2}}} > 0\,\,\forall x \in \left( { - 1;2} \right)\) và \(y(2) = 1\).

Vì hàm số tăng trên \(\left( { - 1;2} \right)\) nên hàm số đạt giá trị lớn nhất \(\mathop {max}\limits_{\left[ { - 1;2} \right]} y = y(2) = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(4\).                      
B. \(0\).                    
C. \(2 + \sqrt 2 \).                            
D. \(2 - \sqrt 2 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[ - 6305.\]            
B. \( - 7566\).           
C. \( - 7546\).                       
D.\( - 7656\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{{11}}{7}\].                                
B. \(\frac{{13}}{5}.\)    
C. \[\frac{8}{5}.\]   
D. \(\frac{{14}}{9}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP