Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ dưới đây.
![Đồ thị hàm số \[y = \left| {f\left( x \right)} \right|\] có 2 tiệm cận ngang là hai đường thẳng \[y = m\] và \[y = n\]. Tính \(m + n\)? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/12-1759195052.png)
Đồ thị hàm số \[y = \left| {f\left( x \right)} \right|\] có 2 tiệm cận ngang là hai đường thẳng \[y = m\] và \[y = n\]. Tính \(m + n\)?
Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ dưới đây.
![Đồ thị hàm số \[y = \left| {f\left( x \right)} \right|\] có 2 tiệm cận ngang là hai đường thẳng \[y = m\] và \[y = n\]. Tính \(m + n\)? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/12-1759195052.png)
Đồ thị hàm số \[y = \left| {f\left( x \right)} \right|\] có 2 tiệm cận ngang là hai đường thẳng \[y = m\] và \[y = n\]. Tính \(m + n\)?
Quảng cáo
Trả lời:
Đồ thị hàm số \[y = \left| {f\left( x \right)} \right|\] được vẽ từ đồ đi hàm số \[y = f\left( x \right)\] bằng cách giữ nguyên phần đồ thị phía trên của trục \(Ox\), phần đồ thị phía dưới trục\(Ox\)thì lấy đối xứng lên qua \(Ox\), rồi bỏ phần đồ thị phía dưới \(Ox\)đi.
Ta có đồ thị hàm \[y = \left| {f\left( x \right)} \right|\] như hình vẽ.
![Đồ thị hàm số \[y = \left| {f\left( x \right)} \right|\] có 2 tiệm cận ngang là hai đường thẳng \[y = m\] và \[y = n\]. Tính \(m + n\)? (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/09/13-1759195076.png)
Suy ra đồ thị hàm số \[y = \left| {f\left( x \right)} \right|\]có hai đường tiệm cận ngang là \[y = 1\] và \[y = 2\].
Vậy \(m + n = 2 + 1 = 3\).
Đáp án: 3
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} + 2\left( {m - 1} \right)x + {m^2} - 2}}\] có đúng hai đường tiệm cận đứng khi và chỉ khi phương trình \[f\left( x \right) = {x^2} + 2\left( {m - 1} \right)x + {m^2} - 2 = 0\] có đúng 2 nghiệm phân biệt khác 1\[ \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\f\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} - \left( {{m^2} - 2} \right) > 0\\1 + 2\left( {m - 1} \right) + {m^2} - 2 \ne 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l} - 2m + 3 > 0\\{m^2} + 2m - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < \frac{3}{2}\\m \ne 1\\m \ne - 3\end{array} \right.\].
Do \(\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left[ { - 2025;2025} \right]\end{array} \right.\) nên \(m \in \left\{ { - 2025, - 2024..., - 4, - 2, - 1,0} \right\}\)
Vậy có 2025 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán
Đáp án: 2025
Lời giải
a) Sai
Có \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = 4;\mathop {\lim }\limits_{x \to {1^ - }} f(x) = 2\]. Vậy đồ thị hàm số không có đường tiệm cận đứng.
b) Đúng
Có \[\mathop {\lim }\limits_{x \to + \infty } f(x) = 6;\mathop {\lim }\limits_{x \to - \infty } f(x) = - \infty \]. Vậy đồ thị hàm số có tiệm cận ngang \[y = 6\]
c) Sai
Đồ thị hàm số không có tiệm cận đứng và tiệm cận ngang \[y = 6\]. Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho là \[1\].
d) Sai
Có \[\mathop {\lim }\limits_{x \to + \infty } \frac{1}{{f(x) + 2}} = \frac{1}{8};\mathop {\lim }\limits_{x \to - \infty } \frac{1}{{f(x) + 2}} = 0\].
Vậy đồ thị hàm số \[y = \frac{1}{{f(x) + 2}}\] có hai đường tiệm cận ngang là \[y = \frac{1}{8}\] và \[y = 0\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


![Câu 18: Cho hàm số bậc ba \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\]. Đồ thị hàm \[y = f\left( x \ri (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/9-1759194921.png)
![Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \[y = \frac{2}{{3f(x) - 2}}\]là (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/15-1759195174.png)
![Câu 22: Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ sau: Đồ thị hàm số\[g\left( x \right){\rm{ }} = \frac{2}{{3f\left( x \right) - 2}}\] có tất cả bao nhiêu đường tiệm cận? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/14-1759195115.png)