Câu hỏi:

30/09/2025 2 Lưu

Tìm \(m\) để giá trị lớn nhất của hàm số \(y = \frac{{x - m}}{{x + 1}}\) trên đoạn \(\left[ {1;3} \right]\) bằng \(2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp số: \( - 3\).

Ta có: \(y' = \frac{{1 + m}}{{{{\left( {x + 1} \right)}^2}}}\).

TH1: \(1 + m > 0 \Leftrightarrow m >  - 1\)

Khi đó: \(y' > 0\),\(\forall x \in \left[ {1;3} \right]\)\( \Rightarrow \) hàm số \(y = \frac{{x - m}}{{x + 1}}\) đồng biến trên đoạn \(\left[ {1;3} \right]\).

Suy ra: \(\mathop {\max }\limits_{\left[ {1;3} \right]} y = y\left( 3 \right) = \frac{{3 - m}}{4} = 2 \Leftrightarrow m =  - 5\) (loại).

TH2: \(1 + m < 0 \Leftrightarrow m <  - 1\)

Khi đó: \(y' < 0\),\(\forall x \in \left[ {1;3} \right]\)\( \Rightarrow \) hàm số \(y = \frac{{x - m}}{{x + 1}}\) nghịch biến trên đoạn \(\left[ {1;3} \right]\).

Suy ra: \(\mathop {\max }\limits_{\left[ {1;3} \right]} y = y\left( 1 \right) = \frac{{1 - m}}{2} = 2 \Leftrightarrow m =  - 3\) (thoả mãn).

Vậy \(m =  - 3\) là giá trị cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = - x - 1\).       
B. \(y = x - 1\).        
C. \(y = - x + 1\).                          
D. \(y = x + 1\).

Lời giải

Ta có \[a = \mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{{ - {x^2} - 3x + 4}}{{x + 2}}:x} \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - {x^2} - 3x + 4}}{{{x^2} + 2x}} =  - 1,\,\]

\[\,b = \mathop {\lim }\limits_{x \to  + \infty } \left[ {\frac{{ - {x^2} - 3x + 4}}{{x + 2}} - \left( { - 1} \right)x} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - x + 4}}{{x + 2}} =  - 1\]

(Tương tự, \[\mathop {\lim }\limits_{x \to  - \infty } \left( {\frac{{ - {x^2} - 3x + 4}}{{x + 2}}:x} \right) =  - 1,\,\]\[\mathop {\lim }\limits_{x \to  - \infty } \left[ {\frac{{ - {x^2} - 3x + 4}}{{x + 2}} - \left( { - 1} \right)x} \right] =  - 1\])

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{ - {x^2} - 3x + 4}}{{x + 2}}\) là đường thẳng có phương trình \(y =  - x - 1.\)

Câu 2

A. \( - 1\).                  
B. \(2\).                    
C. \( - 2\).                             
D. \(1\).

Lời giải

Dựa vào bảng biến thiên, ta có giá trị cực tiểu của hàm số đã cho bằng \( - 2.\)

Câu 3

A. \(4\).                      
B. \(2\).                    
C. \(3\).                           
D. \(0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = 2025\).         
B. \(y = 2024\).        
C. \(y = 1\).                             
D. \(y = - 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x = \frac{3}{2}\).                               
B. \(x = - \frac{6}{5}\).            
C. \(x = - \frac{1}{2}\).            
D. \(x = \frac{2}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hàm số đồng biến trên khoảng \[\left( {2; + \infty } \right)\].                     
B. Hàm số đồng biến trên khoảng \[\left( { - 2;2} \right)\].
C. Hàm số nghịch biến trên khoảng \[\left( { - \infty ; + \infty } \right)\].     
D. Hàm số đồng biến trên khoảng \[\left( { - \infty ; - 2} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(6\).                      
B. \(9\).                    
C. \( - 3\).                             
D. \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP