Câu hỏi:

30/09/2025 46 Lưu

PHẦN II. CÂU TRẮC NGHIỆM ĐÚNG SAI

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\)và có đồ thị như hình vẽ :

                                        Xét tính đúng sai của các khẳng định sau:  a) Hàm số đồng biến trên khoảng \(\left( {0;2} \right)\). (ảnh 1)

Xét tính đúng sai của các khẳng định sau:

a) Hàm số đồng biến trên khoảng \(\left( {0;2} \right)\).

b) Hàm số đạt cực đại tại \(x = 0\).

c) Giá trị nhỏ nhất của hàm số trên \(\left[ { - 1;1} \right]\) bằng \( - 4\).

d) Hàm số \(g\left( x \right) = f\left( {3 - x} \right)\) nghịch biến trên \(\left( {2;5} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Vì dựa vào đồ thị ta thấy hàm số đồng biến trên khoảng \(\left( {0;2} \right)\).

b) Sai.

Vì dựa vào đồ thị ta thấy hàm số đạt cực đại tại \(x = 2\).

c) Đúng.

Theo đồ thị ta thấy \(\mathop {\max }\limits_{\left[ { - 1;1} \right]} f\left( x \right) = 0\)và \(\mathop {\min }\limits_{\left[ { - 1;1} \right]} f\left( x \right) =  - 4\).

d) Sai.

Xét hàm số \(g\left( x \right) = f\left( {3 - x} \right)\) . Vì \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) nên \(g\left( x \right)\)liên tục trên \(\mathbb{R}\).

Từ đồ thị ta có bảng xét dấu của \(f'\left( x \right)\) như sau:

Xét tính đúng sai của các khẳng định sau:  a) Hàm số đồng biến trên khoảng \(\left( {0;2} \right)\). (ảnh 2)

Ta có: \(g'\left( x \right) = \left( {3 - x} \right)'f'\left( {3 - x} \right) =  - f'\left( {3 - x} \right)\).

Cho \(g'\left( x \right) = 0\)\( \Leftrightarrow  - f'\left( {3 - x} \right) = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3 - x = 0}\\{3 - x = 2}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 3}\\{x = 1}\end{array}} \right.\)

Từ bảng xét dấu của \(f'\left( x \right)\) suy ra được bảng xét dấu của \(g'\left( x \right)\)

Xét tính đúng sai của các khẳng định sau:  a) Hàm số đồng biến trên khoảng \(\left( {0;2} \right)\). (ảnh 3)

          Vậy hàm số \(g\left( x \right)\) không nghịch biến trên \(\left( {2;5} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 10

Một hộp sữa dung tích \[1\] lít có dạng hình hộp chữ nhật với đáy là hình vuông cạnh bằng \[x\,\,\left( {cm} \right)\] và chiều cao \[h\,\,\left( {cm} \right)\]. Tìm giá trị của \[x\] để diện tích toàn phần của hình hộp là nhỏ nhất. (ảnh 1)

Thể tích của hộp sữa là: \[V = {x^2}h\,\,\left( {c{m^3}} \right)\].

Theo bài ra, ta có: \[V = 1\left( l \right) = 1000\,\,\left( {c{m^3}} \right) \Rightarrow {x^2}h = 1000 \Rightarrow h = \frac{{1000}}{{{x^2}}}\].

Ta có diện tích toàn phần của hộp sữa là: \[{S_{tp}} = {S_{xq}} + {S_d} = 4hx + 2{x^2} = 4.\frac{{1000}}{{{x^2}}}.x + 2{x^2} = 2{x^2} + \frac{{4000}}{x}\]

Đặt \[y = 2{x^2} + \frac{{4000}}{x} \Rightarrow y' = 4x - \frac{{4000}}{{{x^2}}}\].

Xét \[y' = 0 \Leftrightarrow 4x - \frac{{4000}}{{{x^2}}} = 0 \Leftrightarrow 4{x^3} - 4000 = 0 \Leftrightarrow x = 10\].

Ta có bảng biến thiên:

Một hộp sữa dung tích \[1\] lít có dạng hình hộp chữ nhật với đáy là hình vuông cạnh bằng \[x\,\,\left( {cm} \right)\] và chiều cao \[h\,\,\left( {cm} \right)\]. Tìm giá trị của \[x\] để diện tích toàn phần của hình hộp là nhỏ nhất. (ảnh 2)

Vậy để hộp sữa có diện tích toàn phần nhỏ nhất thì \[x = 10\].

Câu 4

A. \(4\).                      
B. \(3\).                    
C. \(2\).                           
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP