PHẦN II. CÂU TRẮC NGHIỆM ĐÚNG SAI
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\)và có đồ thị như hình vẽ :
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng \(\left( {0;2} \right)\).
b) Hàm số đạt cực đại tại \(x = 0\).
c) Giá trị nhỏ nhất của hàm số trên \(\left[ { - 1;1} \right]\) bằng \( - 4\).
d) Hàm số \(g\left( x \right) = f\left( {3 - x} \right)\) nghịch biến trên \(\left( {2;5} \right)\).
PHẦN II. CÂU TRẮC NGHIỆM ĐÚNG SAI
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\)và có đồ thị như hình vẽ :
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng \(\left( {0;2} \right)\).
b) Hàm số đạt cực đại tại \(x = 0\).
c) Giá trị nhỏ nhất của hàm số trên \(\left[ { - 1;1} \right]\) bằng \( - 4\).
d) Hàm số \(g\left( x \right) = f\left( {3 - x} \right)\) nghịch biến trên \(\left( {2;5} \right)\).
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:

a) Đúng.
Vì dựa vào đồ thị ta thấy hàm số đồng biến trên khoảng \(\left( {0;2} \right)\).
b) Sai.
Vì dựa vào đồ thị ta thấy hàm số đạt cực đại tại \(x = 2\).
c) Đúng.
Theo đồ thị ta thấy \(\mathop {\max }\limits_{\left[ { - 1;1} \right]} f\left( x \right) = 0\)và \(\mathop {\min }\limits_{\left[ { - 1;1} \right]} f\left( x \right) = - 4\).
d) Sai.
Xét hàm số \(g\left( x \right) = f\left( {3 - x} \right)\) . Vì \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) nên \(g\left( x \right)\)liên tục trên \(\mathbb{R}\).
Từ đồ thị ta có bảng xét dấu của \(f'\left( x \right)\) như sau:
Ta có: \(g'\left( x \right) = \left( {3 - x} \right)'f'\left( {3 - x} \right) = - f'\left( {3 - x} \right)\).
Cho \(g'\left( x \right) = 0\)\( \Leftrightarrow - f'\left( {3 - x} \right) = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3 - x = 0}\\{3 - x = 2}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 3}\\{x = 1}\end{array}} \right.\)
Từ bảng xét dấu của \(f'\left( x \right)\) suy ra được bảng xét dấu của \(g'\left( x \right)\)
Vậy hàm số \(g\left( x \right)\) không nghịch biến trên \(\left( {2;5} \right)\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ bảng biến thiên, ta có :
là tiệm cận đứng
là tiệm cận ngang
Vậy đồ thị hàm số có 1 TCĐ và 1 TCN.
a. Sai.
b. Sai.
c. Sai.
d. Đúng.
Lời giải
Đáp án: 10
Thể tích của hộp sữa là: \[V = {x^2}h\,\,\left( {c{m^3}} \right)\].
Theo bài ra, ta có: \[V = 1\left( l \right) = 1000\,\,\left( {c{m^3}} \right) \Rightarrow {x^2}h = 1000 \Rightarrow h = \frac{{1000}}{{{x^2}}}\].
Ta có diện tích toàn phần của hộp sữa là: \[{S_{tp}} = {S_{xq}} + {S_d} = 4hx + 2{x^2} = 4.\frac{{1000}}{{{x^2}}}.x + 2{x^2} = 2{x^2} + \frac{{4000}}{x}\]
Đặt \[y = 2{x^2} + \frac{{4000}}{x} \Rightarrow y' = 4x - \frac{{4000}}{{{x^2}}}\].
Xét \[y' = 0 \Leftrightarrow 4x - \frac{{4000}}{{{x^2}}} = 0 \Leftrightarrow 4{x^3} - 4000 = 0 \Leftrightarrow x = 10\].
Ta có bảng biến thiên:
Vậy để hộp sữa có diện tích toàn phần nhỏ nhất thì \[x = 10\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.