PHẦN III. CÂU TRẮC NGHIỆM TRẢ LỜI NGẮN
Cho hàm số \(y = \frac{{2{x^2} + 5x + 4}}{{x + 2}}\). Độ dài của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số bằng.
PHẦN III. CÂU TRẮC NGHIỆM TRẢ LỜI NGẮN
Cho hàm số \(y = \frac{{2{x^2} + 5x + 4}}{{x + 2}}\). Độ dài của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số bằng.
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:

Đáp án: \(2\sqrt {17} \)
Xét hàm số \(y = \frac{{2{x^2} + 5x + 4}}{{x + 2}}\)
Điều kiện: \(x \ne - 2\)
Ta có: \(y' = \frac{{2{x^2} + 8x + 6}}{{{{\left( {x + 2} \right)}^2}}}\) \(\left( {x \ne - 2} \right)\)
Cho \(y' = 0\)\( \Rightarrow 2{x^2} + 8x + 6 = 0\)\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = - 1 \Rightarrow y = 1}\\{\,\,\,x = - 3 \Rightarrow y = - 7}\end{array}} \right.\)
Đồ thị hàm số có hai điểm cực trị \(A\left( { - 1;1} \right)\) và \(B\left( { - 3; - 7} \right)\)\( \Rightarrow AB = 2\sqrt {17} \)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 5
Giả sử hàm số có đồ thị là \((C)\). Ta có :
+) \[y = \frac{{{x^2} - x + 1}}{{x - 1}} = x + \frac{1}{{x - 1}}\].
+) \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {f\left( x \right) - x} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \left[ {\frac{{{x^2} - x + 1}}{{x - 1}} - x} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{{x - 1}} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{\frac{1}{x}}}{{1 - \frac{1}{x}}} = 0 \Rightarrow \left( C \right)\) có tiệm cận xiên là đường thẳng \(y = x\).
Suy ra : \(a = 1;\,\,\,b = 0\,\, \Rightarrow P = 5a + 2024b = 5.1 + 2024.0 = 5.\)
Lời giải
Trả lời : 3
Đặt \(t = {x^3} + 4x + m \Rightarrow t' = 3{x^2} + 4\) nên \(t\) đồng biến trên \(\left( { - 1;1} \right)\) và \(t \in \left( {m - 5;m + 5} \right)\)
Yêu cầu bài toán trở thành tìm \(m\) để hàm số \(f\left( t \right)\) nghịch biến trên khoảng \(\left( {m - 5;m + 5} \right)\).
Dựa vào bảng biến thiên ta được \(\left\{ \begin{array}{l}m - 5 \ge - 2\\m + 5 \le 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge 3\\m \le 3\end{array} \right. \Leftrightarrow m = 3\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.