Vận tốc của một tàu con thoi từ lúc cất cánh tại thời điểm \[t = 0\,\,\left( s \right)\] cho đến thời điểm \[t = 126\,\,\left( s \right)\] được cho bởi công thức \[v(t) = 0,001302{t^3} - 0,09029{t^2} + 83\] (vận tốc được tính bằng đơn vị \[ft/s\]). Hỏi tàu con thoi đạt vận tốc lớn nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm).
Vận tốc của một tàu con thoi từ lúc cất cánh tại thời điểm \[t = 0\,\,\left( s \right)\] cho đến thời điểm \[t = 126\,\,\left( s \right)\] được cho bởi công thức \[v(t) = 0,001302{t^3} - 0,09029{t^2} + 83\] (vận tốc được tính bằng đơn vị \[ft/s\]). Hỏi tàu con thoi đạt vận tốc lớn nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm).
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:
Ta có: \[v'(t) = 0,003906{t^2} - 0,18058t\]
\[v'(t) = 0 \Leftrightarrow 0,003906{t^2} - 0,18058t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 46,23\end{array} \right.\].
\[\begin{array}{l}v(0) = 83;\\v\left( {46,23} \right) = 18,67;\\v\left( {126} \right) = 1254,05.\end{array}\]
Tàu con thoi đạt vận tốc lớn nhất bằng \[1254,05\,\,\,\left( {ft/s} \right)\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có độ dài một cạnh của mảnh vườn là \(x\,\,\left( m \right)\) nên độ dài cạnh còn lại của mảnh vườn là \(\frac{{900}}{x}\,\,\left( m \right)\).
Ta có \(x \ge \frac{{900}}{x}\,\). Suy ra, \(x \ge 30\).
Ta có \(P\left( x \right) = 2\left( {x + \frac{{900}}{x}} \right) = 2x + \frac{{1800}}{x}\).
Vì \(\mathop {\lim }\limits_{x \to + \infty } \left[ {P\left( x \right) - 2x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{1800}}{x} = 0\) nên đồ thị hàm số \(P\left( x \right)\) có tiệm cận xiên là đường thẳng \(y = 2x\).
Suy ra \(a = 2,\,\,b = 0\). Do vậy, \[T = 100\].
Lời giải
\(y = {x^3} - 3{x^2} - 9x + 5\). Tập xác định \(D = \mathbb{R}\).
\(y' = 3{x^2} - 6x - 9\).
\(y' = 0 \Leftrightarrow 3{x^2} - 6x - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 3\end{array} \right.\).
Với \[x = - 1 \Rightarrow y = 10 \Rightarrow A\left( { - 1;10} \right)\].
Với \[x = 3 \Rightarrow y = - 22 \Rightarrow B\left( {3; - 22} \right)\].
Ta có phương trình đường thẳng \[AB\] là: \[\frac{{x + 1}}{{3 + 1}} = \frac{{y - 10}}{{ - 22 - 10}}\] \[ \Rightarrow y = - 8x + 2\] \[ \Rightarrow {x_I} = \frac{1}{4}\]
Vậy suy ra \[\frac{{IA}}{{IB}} = \frac{{\sqrt {{{\left( { - 1 - \frac{1}{4}} \right)}^2} + {{10}^2}} }}{{\sqrt {{{\left( {3 - \frac{1}{4}} \right)}^2} + {{22}^2}} }} = \frac{5}{{11}}\]\( \Rightarrow b + c = 16\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho hàm số \[y = f\left( x \right)\] có đạo hàm trên \[\mathbb{R}\], thỏa mãn \[f\left( { - 1} \right) = f\left( 3 \right) = 0\] và đồ thị của hàm số \[y = (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/11-1759228136.png)