Câu hỏi:

03/10/2025 492 Lưu

Cho biết \(\cos x = - \frac{{12}}{{13}}\)\(\pi < x < \frac{{3\pi }}{2}\); khi đó:

a) \(\sin x > 0\)

b) \(\sin x = - \frac{5}{{13}}\)

c) \(\cot x = \frac{5}{{12}}\)

d) \(\sin \left( {\frac{\pi }{3} - x} \right) = \frac{{5 - 12\sqrt 3 }}{{26}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Đúng

c) Sai

d) Đúng

 

\(\pi < x < \frac{{3\pi }}{2}\) nên \(\sin x < 0\).

Ta có: \(\cos x = - \frac{{12}}{{13}} \Rightarrow \sin x = - \sqrt {1 - {{\cos }^2}x} = - \sqrt {1 - {{\left( { - \frac{{12}}{{13}}} \right)}^2}} = - \frac{5}{{13}}\).

\(\sin \left( {\frac{\pi }{3} - x} \right) = \sin \frac{\pi }{3}\cos x - \cos \frac{\pi }{3}\sin x = \frac{{\sqrt 3 }}{2}\left( { - \frac{{12}}{{13}}} \right) - \frac{1}{2}\left( { - \frac{5}{{13}}} \right) = \frac{{5 - 12\sqrt 3 }}{{26}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có:

\(\begin{array}{l}\tan \alpha = \tan (\widehat {BAD} - \widehat {CAD})\\ = \frac{{\tan \widehat {BAD} - \tan \widehat {CAD}}}{{1 + \tan \widehat {BAD}\tan \widehat {CAD}}} = \frac{{\frac{{15}}{{12}} - \frac{9}{{12}}}}{{1 + \frac{{15}}{{12}} \cdot \frac{9}{{12}}}} = \frac{8}{{31}}.\end{array}\)

Vì vậy α14,47°

\(\begin{array}{*{20}{l}}B&{ = \frac{{\sin 2x + 2\sin 3x + \sin 4x}}{{\cos 3x + 2\cos 4x + \cos 5x}} = \frac{{2\sin 3x\cos x + 2\sin 3x}}{{2\cos 4x\cos x + 2\cos 4x}} = \frac{{2\sin 3x(\cos x + 1)}}{{2\cos 4x(\cos x + 1)}} = \frac{{\sin 3x}}{{\cos 4x}}}\\{}&{}\end{array}\)

Câu 2

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho biết \(\sin x = \frac{1}{{\sqrt 3 }}\)\(0 < x < \frac{\pi }{2}\); khi đó:

a) \(\cos x > 0\)

b) \(\cos x = \frac{{\sqrt 6 }}{3}\)

c) \(\tan x = \frac{{\sqrt 3 }}{3}\)

d) \(\cos \left( {x + \frac{\pi }{3}} \right) = \frac{{\sqrt 6 - 3}}{8}{\rm{. }}\)

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

 

a) Vì \(0 < x < \frac{\pi }{2}\) nên \(\cos x > 0\).

Ta có: \(\sin x = \frac{1}{{\sqrt 3 }} \Rightarrow \cos x = \sqrt {1 - {{\sin }^2}x} = \sqrt {1 - \frac{1}{3}} = \frac{{\sqrt 6 }}{3}\).

\(\cos \left( {x + \frac{\pi }{3}} \right) = \cos x\cos \frac{\pi }{3} - \sin x\sin \frac{\pi }{3} = \frac{{\sqrt 6 }}{3} \cdot \frac{1}{2} - \frac{1}{{\sqrt 3 }} \cdot \frac{{\sqrt 3 }}{2} = \frac{{\sqrt 6 - 3}}{6}{\rm{. }}\)

Câu 3

A. \(P = 0\).               
B. \(P = - 1\).          
C. \(P = \frac{1}{2}\).            
D. \(P = - \frac{{\sqrt 3 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{1}{3},\,\frac{5}{3}\) hoặc ngược lại.                                                              
B. \(\frac{1}{2},\,\frac{3}{2}\) hoặc ngược lại.              
C. \(1 - \frac{{\sqrt 3 }}{2},\,1 + \frac{{\sqrt 3 }}{2}\) hoặc ngược lại.          
D. \(1 - \frac{{\sqrt 2 }}{2},\,1 + \frac{{\sqrt 2 }}{2}\) hoặc ngược lại.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP