Từ một vị trí \(A\), người ta buộc hai sợi cáp \(AB\) và \(AC\) đến một cái trụ cao \(15\;m\), được dựng vuông góc với mặt đất, chân trụ ở vị trí \(D\). Biết \(CD = 9\;m\) và \(AD = 12\;m\). Tìm góc nhọn \(\alpha = \widehat {BAC}\) tạo bởi hai sợi dây cáp đó, đồng thời tính gần đúng \(\alpha \) (làm tròn đến hàng phần chục, đơn vị độ).

Từ một vị trí \(A\), người ta buộc hai sợi cáp \(AB\) và \(AC\) đến một cái trụ cao \(15\;m\), được dựng vuông góc với mặt đất, chân trụ ở vị trí \(D\). Biết \(CD = 9\;m\) và \(AD = 12\;m\). Tìm góc nhọn \(\alpha = \widehat {BAC}\) tạo bởi hai sợi dây cáp đó, đồng thời tính gần đúng \(\alpha \) (làm tròn đến hàng phần chục, đơn vị độ).
Câu hỏi trong đề: Đề kiểm tra Công thức lượng giác (có lời giải) !!
Quảng cáo
Trả lời:

Ta có:
\(\begin{array}{l}\tan \alpha = \tan (\widehat {BAD} - \widehat {CAD})\\ = \frac{{\tan \widehat {BAD} - \tan \widehat {CAD}}}{{1 + \tan \widehat {BAD}\tan \widehat {CAD}}} = \frac{{\frac{{15}}{{12}} - \frac{9}{{12}}}}{{1 + \frac{{15}}{{12}} \cdot \frac{9}{{12}}}} = \frac{8}{{31}}.\end{array}\)
Vì vậy
\(\begin{array}{*{20}{l}}B&{ = \frac{{\sin 2x + 2\sin 3x + \sin 4x}}{{\cos 3x + 2\cos 4x + \cos 5x}} = \frac{{2\sin 3x\cos x + 2\sin 3x}}{{2\cos 4x\cos x + 2\cos 4x}} = \frac{{2\sin 3x(\cos x + 1)}}{{2\cos 4x(\cos x + 1)}} = \frac{{\sin 3x}}{{\cos 4x}}}\\{}&{}\end{array}\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \({\rm{cos}}\alpha = \frac{3}{5}\) và \[0 \le \alpha \le {45^0} \Rightarrow \sin \alpha = \frac{4}{5} \Rightarrow \sin 2\alpha = 2\sin \alpha .{\rm{cos}}\alpha {\rm{ = }}\frac{{24}}{{25}}.\]
Khi đó \(d = \frac{{{v_0}^2\sin 2\alpha }}{g} = \frac{{{{15}^2}.\frac{{24}}{{25}}}}{{10}} = \frac{{108}}{5}\).
Vậy \[d = \frac{{108}}{5}\,{\rm{cm}}\].
Lời giải
Gọi \(\widehat {BOA} = \alpha \) \[\left( {0^\circ < \alpha < 90^\circ } \right)\]
Vẽ \[BB' \bot AH\], \[CC' \bot AH\]\[\left( {B' \in AH,\,C' \in AH} \right)\]
Khi đó ta có \(\sin \alpha = \frac{{27}}{{60}} = \frac{9}{{20}} \Rightarrow {\rm{cos}}\alpha = \frac{{\sqrt {319} }}{{20}}\).
Lại có \(\widehat {COA} = 2\alpha \Rightarrow \sin \widehat {COA} = \sin 2\alpha = 2\sin \alpha .{\rm{cos}}\alpha = 2.\frac{9}{{20}}.\frac{{\sqrt {319} }}{{20}} = \frac{{9\sqrt {319} }}{{200}}\).
Trong tam giác \(COC'\) ta có \(\frac{{CC'}}{{OC}} = \sin 2\alpha \Rightarrow CC' = OC.\sin 2\alpha = 60.\frac{{9\sqrt {319} }}{{200}} \approx 48.2\).
Vậy khoảng cách từ \(C\)đến \(AH\)khoảng \[48,2\,{\rm{cm}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.