Biết \(\sin 2\alpha = - \frac{4}{5},\frac{\pi }{2} < \alpha < \frac{{3\pi }}{2}\). Khi đó:
a) \(\cos \alpha < 0\)
b) \(2\sin \alpha \cos \alpha = - \frac{4}{5}\)
c) \(\cos \alpha = \frac{{ - 2}}{{\sqrt 5 }},\sin \alpha = \frac{1}{{\sqrt 5 }}\)
d) \(\cos \alpha = \frac{{ - 1}}{{\sqrt 5 }},\sin \alpha = - \frac{2}{{\sqrt 5 }}\)
Biết \(\sin 2\alpha = - \frac{4}{5},\frac{\pi }{2} < \alpha < \frac{{3\pi }}{2}\). Khi đó:
a) \(\cos \alpha < 0\)
b) \(2\sin \alpha \cos \alpha = - \frac{4}{5}\)
c) \(\cos \alpha = \frac{{ - 2}}{{\sqrt 5 }},\sin \alpha = \frac{1}{{\sqrt 5 }}\)
d) \(\cos \alpha = \frac{{ - 1}}{{\sqrt 5 }},\sin \alpha = - \frac{2}{{\sqrt 5 }}\)
Câu hỏi trong đề: Đề kiểm tra Công thức lượng giác (có lời giải) !!
Quảng cáo
Trả lời:
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
Vì \(\frac{\pi }{2} < \alpha < \frac{{3\pi }}{2}\) nên \(\cos \alpha < 0\). Ta có hệ: \(\left\{ {\begin{array}{*{20}{l}}{{{\sin }^2}\alpha + {{\cos }^2}\alpha = 1}\\{2\sin \alpha \cos \alpha = - \frac{4}{5}}\end{array}} \right.\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{4}{{25 c o s{ ^2}\alpha }} + c o s{ ^2}\alpha = 1}\\{ s i n \alpha = - \frac{2}{{5 c o s \alpha }}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{25{{\cos }^4}\alpha - 25{{\cos }^2}\alpha + 4 = 0}\\{\sin \alpha = - \frac{2}{{5\cos \alpha }}}\end{array}} \right.} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}\cos { ^2}\alpha = \frac{4}{5}\\\cos { ^2}\alpha = \frac{1}{5}\end{array} \right.\\\sin \alpha = - \frac{2}{{5 \cos \alpha }}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}\cos \alpha = \frac{{ - 2}}{{\sqrt 5 }}\\\cos \alpha = \frac{{ - 1}}{{\sqrt 5 }}\end{array} \right.\\\sin \alpha = - \frac{2}{{5 \cos \alpha }}\end{array} \right. \Rightarrow \left[ {\begin{array}{*{20}{l}}{\cos \alpha = \frac{{ - 2}}{{\sqrt 5 }},\sin \alpha = \frac{1}{{\sqrt 5 }}}\\{\cos \alpha = \frac{{ - 1}}{{\sqrt 5 }},\sin \alpha = \frac{2}{{\sqrt 5 }}}\end{array}} \right.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có:
\(\begin{array}{l}\tan \alpha = \tan (\widehat {BAD} - \widehat {CAD})\\ = \frac{{\tan \widehat {BAD} - \tan \widehat {CAD}}}{{1 + \tan \widehat {BAD}\tan \widehat {CAD}}} = \frac{{\frac{{15}}{{12}} - \frac{9}{{12}}}}{{1 + \frac{{15}}{{12}} \cdot \frac{9}{{12}}}} = \frac{8}{{31}}.\end{array}\)
Vì vậy
\(\begin{array}{*{20}{l}}B&{ = \frac{{\sin 2x + 2\sin 3x + \sin 4x}}{{\cos 3x + 2\cos 4x + \cos 5x}} = \frac{{2\sin 3x\cos x + 2\sin 3x}}{{2\cos 4x\cos x + 2\cos 4x}} = \frac{{2\sin 3x(\cos x + 1)}}{{2\cos 4x(\cos x + 1)}} = \frac{{\sin 3x}}{{\cos 4x}}}\\{}&{}\end{array}\)
Câu 2
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho biết \(\sin x = \frac{1}{{\sqrt 3 }}\) và \(0 < x < \frac{\pi }{2}\); khi đó:
a) \(\cos x > 0\)
b) \(\cos x = \frac{{\sqrt 6 }}{3}\)
c) \(\tan x = \frac{{\sqrt 3 }}{3}\)
d) \(\cos \left( {x + \frac{\pi }{3}} \right) = \frac{{\sqrt 6 - 3}}{8}{\rm{. }}\)
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho biết \(\sin x = \frac{1}{{\sqrt 3 }}\) và \(0 < x < \frac{\pi }{2}\); khi đó:
a) \(\cos x > 0\)
b) \(\cos x = \frac{{\sqrt 6 }}{3}\)
c) \(\tan x = \frac{{\sqrt 3 }}{3}\)
d) \(\cos \left( {x + \frac{\pi }{3}} \right) = \frac{{\sqrt 6 - 3}}{8}{\rm{. }}\)
Lời giải
|
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
a) Vì \(0 < x < \frac{\pi }{2}\) nên \(\cos x > 0\).
Ta có: \(\sin x = \frac{1}{{\sqrt 3 }} \Rightarrow \cos x = \sqrt {1 - {{\sin }^2}x} = \sqrt {1 - \frac{1}{3}} = \frac{{\sqrt 6 }}{3}\).
\(\cos \left( {x + \frac{\pi }{3}} \right) = \cos x\cos \frac{\pi }{3} - \sin x\sin \frac{\pi }{3} = \frac{{\sqrt 6 }}{3} \cdot \frac{1}{2} - \frac{1}{{\sqrt 3 }} \cdot \frac{{\sqrt 3 }}{2} = \frac{{\sqrt 6 - 3}}{6}{\rm{. }}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

