Câu hỏi:

12/10/2025 152 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hình vuông \(ABCD\) cạnh \(a\). Lấy \(E\) là trung điểm của \(BC\), điểm \(F\) thoả mãn \(\overrightarrow {BF}  = \frac{3}{4}\overrightarrow {BD} \) Khi đó:

Cho hình vuông \(ABCD\) cạnh \(a\). Lấy \(E\) là trung đ (ảnh 1)

a) \(\overrightarrow {AE}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \)

b) \(\overrightarrow {AF}  = \frac{1}{4}\overrightarrow {AB}  + \frac{5}{4}\overrightarrow {AD} .\)

c) \(\overrightarrow {EF}  = \frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} .\)

d) Tam giác \(AEF\)vuông cân.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Đúng

d) Đúng

 

Ta có: \(\overrightarrow {AE}  = \overrightarrow {AB}  + \overrightarrow {BE}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {BC}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \).

\(\begin{array}{l}\overrightarrow {AF}  = \overrightarrow {AB}  + \overrightarrow {BF}  = \overrightarrow {AB}  + \frac{3}{4}\overrightarrow {BD}  = \overrightarrow {AB}  + \frac{3}{4}(\overrightarrow {AD}  - \overrightarrow {AB} ) = \frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} .\\\overrightarrow {EF}  = \overrightarrow {AF}  - \overrightarrow {AE}  = \left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right) - \left( {\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} } \right) = \frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} .\end{array}\)

Ta có: \(\overrightarrow {AF}  \cdot \overrightarrow {EF}  = \left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right) \cdot \left( {\frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} } \right)\)

\( = \frac{{ - 3}}{{16}}{\overrightarrow {AB} ^2} - \frac{1}{2}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{3}{{16}}{\overrightarrow {AD} ^2} = 0 \Rightarrow AF \bot EF{\rm{. }}\)

Ta có: \({\overrightarrow {AF} ^2} = {\left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right)^2} = \frac{1}{{16}}{\overrightarrow {AB} ^2} + \frac{3}{8}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{9}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}\).

\({\overrightarrow {EF} ^2} = {\left( {\frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} } \right)^2} = \frac{9}{{16}}{\overrightarrow {AB} ^2} - \frac{3}{8}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{1}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}.\)

\( \Rightarrow A{F^2} = E{F^2} = \frac{5}{8}{\overrightarrow {AB} ^2} \Rightarrow AF = EF\). Vậy tam giác \(AEF\) vuông cân tại \(F\).

Chú ý: Ta có thể chứng minh tam giác \(AEF\) vuông bằng định lí Pythagore.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Sai

d) Đúng

Cho hình thoi \(ABCD\) có cạnh bằng 2 và góc \(B\) bằng \({60^^\circ }\). Khi đó:  a) \((\overrightarrow {A (ảnh 1) 

Xét hình thoi \(ABCD\) có ABC^=60°BAD^=120°; tam giác \(ABC\) có AB=BC=2,ABC^=60°ΔABC đều cạnh 2OB=232=3

Ta có: (AB,AC)=BAC^=60°  ; (AB,DA)=180°(AB,AD)=180°BAD^=180°120°=60°

Ta có: DADC=|DA||DC|cos(DA,DC)=DADCcosADC^=22cos60°=2;

OBBA=BOBA=|BO||BA|cosABO^=BOBAcos30°=3232=3.

Lời giải

Gọi \(I\) là trung điểm của \(AB\) ta có:

\(\overrightarrow {MA}  \cdot \overrightarrow {MB}  = \frac{{3{a^2}}}{4} \Leftrightarrow (\overrightarrow {MI}  + \overrightarrow {IA} )(\overrightarrow {MI}  + \overrightarrow {IB} ) = \frac{{3{a^2}}}{4}\)

\( \Leftrightarrow (\overrightarrow {MI}  + \overrightarrow {IA} )(\overrightarrow {MI}  - \overrightarrow {IA} ) = \frac{{3{a^2}}}{4} \Leftrightarrow M{I^2} - I{A^2} = \frac{{3{a^2}}}{4}\)\(\)

\(\mathop  \Leftrightarrow \limits^{IA = \frac{a}{2}} M{I^2} = \frac{{{a^2}}}{4} + \frac{{3{a^2}}}{4} \Leftrightarrow MI = a.\)

Vậy tập hợp điểm \(M\) là đường tròn tâm \(I\) bán kính \(R = a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP