Cho tam giác \(ABC\) có . Gọi \(D\) là trung điểm của đoạn thẳng \(BC\). Điểm \(E\) thoả mãn \(\overrightarrow {AE} = k\overrightarrow {AC} (k \in \mathbb{R})\) (Hình). Khi đó:

a) \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 20\)
b) \(\overrightarrow {AD} = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \)
c) \(BC = 3\sqrt 5 \)
d) \(AD \bot BE\) khi \(k = \frac{{14}}{{15}}\).
Cho tam giác \(ABC\) có . Gọi \(D\) là trung điểm của đoạn thẳng \(BC\). Điểm \(E\) thoả mãn \(\overrightarrow {AE} = k\overrightarrow {AC} (k \in \mathbb{R})\) (Hình). Khi đó:
a) \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 20\)
b) \(\overrightarrow {AD} = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \)
c) \(BC = 3\sqrt 5 \)
d) \(AD \bot BE\) khi \(k = \frac{{14}}{{15}}\).
Quảng cáo
Trả lời:

a) Sai |
b) Đúng |
c) Sai |
d) Đúng |
a) Ta có:
b) Ta có: \(\overrightarrow {BC} = \overrightarrow {AC} - \overrightarrow {AB} ,\overrightarrow {AD} = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \).
Khi đó:
\(\begin{array}{*{20}{l}}{{{\overrightarrow {BC} }^2}}&{ = {{(\overrightarrow {AC} - \overrightarrow {AB} )}^2} = {{\overrightarrow {AC} }^2} - 2\overrightarrow {AC} \cdot \overrightarrow {AB} + {{\overrightarrow {AB} }^2} = {6^2} - 2 \cdot 24 + {{(4\sqrt 2 )}^2} = 20}\\{}&{ \Rightarrow BC = 2\sqrt 5 .}\\{{{\overrightarrow {AD} }^2}}&{ = {{\left( {\frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} } \right)}^2} = \frac{1}{4}\left( {{{\overrightarrow {AB} }^2} + 2\overrightarrow {AB} \cdot \overrightarrow {AC} + {{\overrightarrow {AC} }^2}} \right)}\\{}&{ = \frac{1}{4}\left[ {{{(4\sqrt 2 )}^2} + 2 \cdot 24 + {6^2}} \right] = 29 \Rightarrow AD = \sqrt {29} .}\end{array}\)
c) Ta có: \(\overrightarrow {BE} = \overrightarrow {AE} - \overrightarrow {AB} = k\overrightarrow {AC} - \overrightarrow {AB} \). Từ đó, ta có:
\(\overrightarrow {AD} \cdot \overrightarrow {BE} = \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} ) \cdot (k\overrightarrow {AC} - \overrightarrow {AB} )\)
\(\begin{array}{l} = \frac{1}{2}\left( {k\overrightarrow {AB} \cdot \overrightarrow {AC} + k{{\overrightarrow {AC} }^2} - {{\overrightarrow {AB} }^2} - \overrightarrow {AB} \cdot \overrightarrow {AC} } \right) = \frac{1}{2}\left[ {24k + {6^2} \cdot k - {{(4\sqrt 2 )}^2} - 24} \right]\\ = 30k - 28.\end{array}\)
Khi đó \(AD \bot BE \Leftrightarrow \overrightarrow {AD} \cdot \overrightarrow {BE} = 0 \Leftrightarrow 30k - 28 = 0 \Leftrightarrow k = \frac{{14}}{{15}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Ta có: \(\overrightarrow {AE} = \overrightarrow {AB} + \overrightarrow {BE} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {BC} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \).
\(\begin{array}{l}\overrightarrow {AF} = \overrightarrow {AB} + \overrightarrow {BF} = \overrightarrow {AB} + \frac{3}{4}\overrightarrow {BD} = \overrightarrow {AB} + \frac{3}{4}(\overrightarrow {AD} - \overrightarrow {AB} ) = \frac{1}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AD} .\\\overrightarrow {EF} = \overrightarrow {AF} - \overrightarrow {AE} = \left( {\frac{1}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AD} } \right) - \left( {\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} } \right) = \frac{{ - 3}}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} .\end{array}\)
Ta có: \(\overrightarrow {AF} \cdot \overrightarrow {EF} = \left( {\frac{1}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AD} } \right) \cdot \left( {\frac{{ - 3}}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} } \right)\)
\( = \frac{{ - 3}}{{16}}{\overrightarrow {AB} ^2} - \frac{1}{2}\overrightarrow {AB} \cdot \overrightarrow {AD} + \frac{3}{{16}}{\overrightarrow {AD} ^2} = 0 \Rightarrow AF \bot EF{\rm{. }}\)
Ta có: \({\overrightarrow {AF} ^2} = {\left( {\frac{1}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AD} } \right)^2} = \frac{1}{{16}}{\overrightarrow {AB} ^2} + \frac{3}{8}\overrightarrow {AB} \cdot \overrightarrow {AD} + \frac{9}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}\).
\({\overrightarrow {EF} ^2} = {\left( {\frac{{ - 3}}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} } \right)^2} = \frac{9}{{16}}{\overrightarrow {AB} ^2} - \frac{3}{8}\overrightarrow {AB} \cdot \overrightarrow {AD} + \frac{1}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}.\)
\( \Rightarrow A{F^2} = E{F^2} = \frac{5}{8}{\overrightarrow {AB} ^2} \Rightarrow AF = EF\). Vậy tam giác \(AEF\) vuông cân tại \(F\).
Chú ý: Ta có thể chứng minh tam giác \(AEF\) vuông bằng định lí Pythagore.
Lời giải
Ta cần chứng minh: \(\overrightarrow {AM} \cdot \overrightarrow {BD} = 0\). Ta có: \(\overrightarrow {BD} = \overrightarrow {BH} + \overrightarrow {HD} = \overrightarrow {HC} + \overrightarrow {HD} ;\overrightarrow {AM} = \frac{1}{2}(\overrightarrow {AH} + \overrightarrow {AD} )\)
Do đó: \(\overrightarrow {AM} \cdot \overrightarrow {BD} = \frac{1}{2}(\overrightarrow {AH} + \overrightarrow {AD} )(\overrightarrow {HC} + \overrightarrow {HD} )\)\( = \frac{1}{2}(\overrightarrow {AH} \cdot \overrightarrow {HC} + \overrightarrow {AH} \cdot \overrightarrow {HD} + \overrightarrow {AD} \cdot \overrightarrow {HC} + \overrightarrow {AD} \cdot \overrightarrow {HD} )\),
mà \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AH} \cdot \overrightarrow {HC} = 0({\rm{ do }}AH \bot BC)}\\{\overrightarrow {AD} \cdot \overrightarrow {HD} = 0({\rm{ do }}HD \bot AC)}\end{array}} \right.\)\( \Rightarrow \overrightarrow {AM} \cdot \overrightarrow {BD} = \frac{1}{2}(\overrightarrow {AH} \cdot \overrightarrow {HD} + \overrightarrow {AD} \cdot \overrightarrow {HC} )\)
\( = \frac{1}{2}[\overrightarrow {AH} \cdot \overrightarrow {HD} + (\overrightarrow {AH} + \overrightarrow {HD} ) \cdot \overrightarrow {HC} ]\)
\( = \frac{1}{2}(\overrightarrow {AH} \cdot \overrightarrow {HD} + \underbrace {\overrightarrow {AH} \cdot \overrightarrow {HC} }_0 + \overrightarrow {HD} \cdot \overrightarrow {HC} ) = \frac{1}{2}\overrightarrow {HD} \cdot (\overrightarrow {AH} + \overrightarrow {HC} ) = \frac{1}{2}\overrightarrow {HD} \cdot \overrightarrow {AC} = 0\).
Vậy \(AM \bot DB\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.