Câu hỏi:

12/10/2025 19 Lưu

Cho hình thoi \(ABCD\) có cạnh bằng 2 và góc \(B\) bằng 60°. Khi đó:

a) (AB,AC)=60°

b) (AB,DA)=30°

c) \(\overrightarrow {DA}  \cdot \overrightarrow {DC}  = 3\)

d) \(\overrightarrow {OB}  \cdot \overrightarrow {BA}  =  - 3\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Sai

d) Đúng

Cho hình thoi \(ABCD\) có cạnh bằng 2 và góc \(B\) bằng \({60^^\circ }\). Khi đó:  a) \((\overrightarrow {A (ảnh 1) 

Xét hình thoi \(ABCD\) có ABC^=60°BAD^=120°; tam giác \(ABC\) có AB=BC=2,ABC^=60°ΔABC đều cạnh 2OB=232=3

Ta có: (AB,AC)=BAC^=60°  ; (AB,DA)=180°(AB,AD)=180°BAD^=180°120°=60°

Ta có: DADC=|DA||DC|cos(DA,DC)=DADCcosADC^=22cos60°=2;

OBBA=BOBA=|BO||BA|cosABO^=BOBAcos30°=3232=3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Đúng

 

Ta có: \(\overrightarrow {AE}  = \overrightarrow {AB}  + \overrightarrow {BE}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {BC}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \).

\(\begin{array}{l}\overrightarrow {AF}  = \overrightarrow {AB}  + \overrightarrow {BF}  = \overrightarrow {AB}  + \frac{3}{4}\overrightarrow {BD}  = \overrightarrow {AB}  + \frac{3}{4}(\overrightarrow {AD}  - \overrightarrow {AB} ) = \frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} .\\\overrightarrow {EF}  = \overrightarrow {AF}  - \overrightarrow {AE}  = \left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right) - \left( {\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} } \right) = \frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} .\end{array}\)

Ta có: \(\overrightarrow {AF}  \cdot \overrightarrow {EF}  = \left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right) \cdot \left( {\frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} } \right)\)

\( = \frac{{ - 3}}{{16}}{\overrightarrow {AB} ^2} - \frac{1}{2}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{3}{{16}}{\overrightarrow {AD} ^2} = 0 \Rightarrow AF \bot EF{\rm{. }}\)

Ta có: \({\overrightarrow {AF} ^2} = {\left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right)^2} = \frac{1}{{16}}{\overrightarrow {AB} ^2} + \frac{3}{8}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{9}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}\).

\({\overrightarrow {EF} ^2} = {\left( {\frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} } \right)^2} = \frac{9}{{16}}{\overrightarrow {AB} ^2} - \frac{3}{8}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{1}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}.\)

\( \Rightarrow A{F^2} = E{F^2} = \frac{5}{8}{\overrightarrow {AB} ^2} \Rightarrow AF = EF\). Vậy tam giác \(AEF\) vuông cân tại \(F\).

Chú ý: Ta có thể chứng minh tam giác \(AEF\) vuông bằng định lí Pythagore.

Lời giải

Cho tam giác \(ABC\) cân tại \(A\). Gọi \(H\) là trung điểm của \(BC,D\) là hình chiếu của \(H\) trên \(AC,M\) là trung điểm của \(HD\). Tính \(\overrightarrow {AM}  \cdot \overrightarrow {BD} \) (ảnh 1)

Ta cần chứng minh: \(\overrightarrow {AM}  \cdot \overrightarrow {BD}  = 0\). Ta có: \(\overrightarrow {BD}  = \overrightarrow {BH}  + \overrightarrow {HD}  = \overrightarrow {HC}  + \overrightarrow {HD} ;\overrightarrow {AM}  = \frac{1}{2}(\overrightarrow {AH}  + \overrightarrow {AD} )\)

Do đó: \(\overrightarrow {AM}  \cdot \overrightarrow {BD}  = \frac{1}{2}(\overrightarrow {AH}  + \overrightarrow {AD} )(\overrightarrow {HC}  + \overrightarrow {HD} )\)\( = \frac{1}{2}(\overrightarrow {AH}  \cdot \overrightarrow {HC}  + \overrightarrow {AH}  \cdot \overrightarrow {HD}  + \overrightarrow {AD}  \cdot \overrightarrow {HC}  + \overrightarrow {AD}  \cdot \overrightarrow {HD} )\),

mà \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AH}  \cdot \overrightarrow {HC}  = 0({\rm{ do }}AH \bot BC)}\\{\overrightarrow {AD}  \cdot \overrightarrow {HD}  = 0({\rm{ do }}HD \bot AC)}\end{array}} \right.\)\( \Rightarrow \overrightarrow {AM}  \cdot \overrightarrow {BD}  = \frac{1}{2}(\overrightarrow {AH}  \cdot \overrightarrow {HD}  + \overrightarrow {AD}  \cdot \overrightarrow {HC} )\)

\( = \frac{1}{2}[\overrightarrow {AH}  \cdot \overrightarrow {HD}  + (\overrightarrow {AH}  + \overrightarrow {HD} ) \cdot \overrightarrow {HC} ]\)

\( = \frac{1}{2}(\overrightarrow {AH}  \cdot \overrightarrow {HD}  + \underbrace {\overrightarrow {AH}  \cdot \overrightarrow {HC} }_0 + \overrightarrow {HD}  \cdot \overrightarrow {HC} ) = \frac{1}{2}\overrightarrow {HD}  \cdot (\overrightarrow {AH}  + \overrightarrow {HC} ) = \frac{1}{2}\overrightarrow {HD}  \cdot \overrightarrow {AC}  = 0\).

Vậy \(AM \bot DB\).

Câu 6

A. \[\overrightarrow {MA} .\overrightarrow {AB} = - MA.AB\].                     
B. \[\overrightarrow {MA} .\overrightarrow {MB} = - MA.MB\].
C. \[\overrightarrow {AM} .\overrightarrow {AB} = AM.AB\].                     
D. \[\overrightarrow {MA} .\overrightarrow {MB} = MA.MB\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP