Câu hỏi:

31/10/2025 33 Lưu

Tìm điều kiện của tham số \(m\) để \(A \cap B\) là một khoảng, biết \(A\left( {m;m + 2} \right),B\left( {4;7} \right)\).

A. \(4 \le m < 7\).

B. \(2 < m < 7\). 
C. \(2 \le m < 7\).
D. \(2 < m < 4\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Để \(A \cap B = \emptyset \) thì \(\left[ \begin{array}{l}m + 2 \le 4\\m \ge 7\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}m \le 2\\m \ge 7\end{array} \right.\).

Do đó để \(A \cap B\) là một khoảng thì \(2 < m < 7\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) S, d) Đ

a) Gọi \(G\) là trọng tâm của tam giác \(ABC\), ta có : \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \vec 0 \Rightarrow \overrightarrow {GB}  + \overrightarrow {GC}  =  - \overrightarrow {GA} \)

b) \(\overrightarrow {BA}  + \overrightarrow {BC}  = 2\overrightarrow {BN} \).

c) \(\overrightarrow {AB}  = \overrightarrow {GB}  - \overrightarrow {GA}  = \overrightarrow {GB}  + (\overrightarrow {GB}  + \overrightarrow {GC} )\)\( = 2\overrightarrow {GB}  + \overrightarrow {GC}  =  - 2 \cdot \frac{2}{3} \cdot \overrightarrow {BN}  - \frac{2}{3}\overrightarrow {CP} \).

d) \(\overrightarrow {BC}  = \overrightarrow {GC}  - \overrightarrow {GB}  =  =  - \frac{2}{3}\overrightarrow {CP}  + \frac{2}{3}\overrightarrow {BN} {\rm{. }}\)

Lời giải

Trả lời: 17

Vì \(P \in Ox\) nên \(P\left( {x;0} \right)\).

Ta có \(\overrightarrow {MN}  = \left( { - 8;2} \right),\overrightarrow {MP}  = \left( {x - 5; - 3} \right)\).

Vì ba điểm \(M,N,P\) thẳng hàng nên \(\frac{{x - 5}}{{ - 8}} = \frac{{ - 3}}{2}\)\( \Leftrightarrow x = 17\).

Hoành độ của điểm \(P\) là \(17\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP