Cho hình bình hành ABCD. Hai điểm M, N lần lượt là trung điểm của BC và AD. Tìm đẳng thức sai:
A. \(\overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AC} \)
B. \(\overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {AD} \)
Quảng cáo
Trả lời:
Đáp án đúng là: D
Tứ giác AMCN là hình bình hành \( \Rightarrow \overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AC} \Rightarrow \) A đúng.
ABCD là hình bình hành \( \Rightarrow \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} = \overrightarrow {AM} + \overrightarrow {AN} \Rightarrow \) B đúng.
\(\overrightarrow {AM} = \overrightarrow {NC} ,\overrightarrow {AN} = \overrightarrow {MC} \Rightarrow \overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {MC} + \overrightarrow {NC} \Rightarrow C\) đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \( - \frac{1}{2}\).
Lời giải
Đáp án đúng là: B
Ta có \(\sin \alpha = \frac{{\sqrt 3 }}{2};\cos \alpha = - \frac{1}{2}\).
Do đó \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\sqrt 3 }}{2}:\left( { - \frac{1}{2}} \right) = - \sqrt 3 \).
Lời giải
a) Đ, b) S, c) S, d) Đ
a) Gọi \(G\) là trọng tâm của tam giác \(ABC\), ta có : \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \vec 0 \Rightarrow \overrightarrow {GB} + \overrightarrow {GC} = - \overrightarrow {GA} \)
b) \(\overrightarrow {BA} + \overrightarrow {BC} = 2\overrightarrow {BN} \).
c) \(\overrightarrow {AB} = \overrightarrow {GB} - \overrightarrow {GA} = \overrightarrow {GB} + (\overrightarrow {GB} + \overrightarrow {GC} )\)\( = 2\overrightarrow {GB} + \overrightarrow {GC} = - 2 \cdot \frac{2}{3} \cdot \overrightarrow {BN} - \frac{2}{3}\overrightarrow {CP} \).
d) \(\overrightarrow {BC} = \overrightarrow {GC} - \overrightarrow {GB} = = - \frac{2}{3}\overrightarrow {CP} + \frac{2}{3}\overrightarrow {BN} {\rm{. }}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
