Câu hỏi:

31/10/2025 6 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Một công ty viễn thông tính phí 1 nghìn đồng mỗi phút gọi nội mạng và 2 nghìn đồng mỗi phút gọi ngoại mạng. Gọi \(x\) và \(y\) lần lượt là số phút gọi nội mạng, ngoại mạng của Bình trong một tháng và Bình muốn số tiền phải trả cho tổng đài luôn thấp hơn 100 nghìn đồng. Khi đó:

a) Số tiền phải trả cho cuộc gọi nội mạng mỗi tháng là \(x\) (nghìn đồng), số tiền phải trả cho cuộc gọi ngoại mạng mỗi tháng là \(2y\) (nghìn đồng). Điều kiện \(x \in \mathbb{N},y \in \mathbb{N}\).

b) Bất phương trình bậc nhất hai ẩn theo \(x;y\) với điều kiện \(x,y \in \mathbb{N}\) là \(x + 2y < 100\).

c) \(x = 50,y = 20\) là nghiệm của bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho.

d) Miền nghiệm của bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho là một tam giác có diện tích bằng 5000.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) Đ, c) Đ, d) S

a) Số tiền phải trả cho cuộc gọi nội mạng mỗi tháng là \(x\) (nghìn đồng), số tiền phải trả cho cuộc gọi ngoại mạng mỗi tháng là \(2y\) (nghìn đồng). Điều kiện \(x \in \mathbb{N},y \in \mathbb{N}\).

b) Bình muốn số tiền phải trả cho tổng đài luôn thấp hơn 100 nghìn đồng nên ta có bất phương trình \(x + 2y < 100\).

c) Thay \(x = 50,y = 20\) vào bất phương trình ta được \(50 + 2.20 < 100\) (đúng).

Suy ra \(x = 50,y = 20\) là nghiệm của bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho.

d) Biểu diễn miền nghiệm trên hệ trục tọa độ

+) Vẽ đường thẳng \(x + 2y = 100\) trên hệ trục tọa độ.

+) Ta thấy điểm \(O\left( {0;0} \right)\) thuộc miền nghiệm của bất phương trình.

Vậy miền nghiệm của bất phương trình \(x + 2y < 100\) là nửa mặt phẳng (không kể bờ d) chứa điểm \(O\) (phần không gạch chéo trên hình).

a) Số tiền phải trả cho cuộc gọi nội mạng mỗi tháng là x (nghìn đồng), số tiền phải trả cho cuộc gọi ngoại mạng mỗi tháng là 2y (nghìn đồng). Điều kiện x thuộc N ,y thuộc N. (ảnh 1)

Trong thực tế, vì \(x,y \in \mathbb{N}\) nên ta chỉ xét miền nghiệm bất phương trình ứng với miền tam giác OAB.

Khi đó \({S_{\Delta OAB}} = \frac{1}{2}.50.100 = 2500\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 10

Miền nghiệm của hệ bất phương trình (I) là miền tam giác \(ABC\) với \(A\left( {4;1} \right),B\left( {8;3} \right),C\left( {2;3} \right)\).

Có bao nhiêu giá trị nguyên của tham số m trong { - 20;20} để bất phương trình 2x - 5y + m >= 0 nghiệm đúng với mọi cặp số  {x;y} thỏa mãn hệ bất phương trình (I). (ảnh 1)

Ta có \(2x - 5y + m \ge 0 \Leftrightarrow m \ge  - 2x + 5y\).

Đặt \(F =  - 2x + 5y\).

Tính giá trị của \(F =  - 2x + 5y\) tại các cặp số \(\left( {x;y} \right)\) là tọa độ của các đỉnh tam giác \(ABC\), ta được:

\(F\left( {4;1} \right) =  - 2.4 + 5.1 =  - 3\); \(F\left( {8;3} \right) =  - 2.8 + 5.3 =  - 1\); \(F\left( {2;3} \right) =  - 2.2 + 5.3 = 11\).

Để bất phương trình \(2x - 5y + m \ge 0\) nghiệm đúng với mọi \(x,y\) thỏa mãn hệ bất phương trình đã cho thì \(m \ge \max F\) trên miền nghiệm của hệ bất phương trình đó hay \(m \ge 11\).

Vậy trong đoạn \(\left[ { - 20;20} \right]\) thì \(m \in \left\{ {11;12;...;20} \right\}\) có 10 giá trị nguyên.

Lời giải

Đáp án đúng là: B

Ta có \(\sin \alpha  = \frac{{\sqrt 3 }}{2};\cos \alpha  =  - \frac{1}{2}\).

Do đó \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\sqrt 3 }}{2}:\left( { - \frac{1}{2}} \right) =  - \sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\cos \alpha  > 0\).  

B. \(\tan \alpha  > 0\).  
C. \(\sin \alpha  < 0\).   
D. \(\cot \alpha  > 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Biểu thức: \(f\left( x \right) = {\cos ^4}x + {\cos ^2}x{\sin ^2}x + {\sin ^2}x\) có giá trị bằng

A. \(1\).  

B. \(2\). 
C. \( - 2\). 
D. \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ \begin{array}{l}x - 2y \le 0\\x + 3y \ge  - 2\end{array} \right.\). 

B. \(\left\{ \begin{array}{l}x - 2y > 0\\x + 3y <  - 2\end{array} \right.\).  
C. \(\left\{ \begin{array}{l}x - 2y \le 0\\x + 3y \le  - 2\end{array} \right.\).  
D. \(\left\{ \begin{array}{l}x - 2y < 0\\x + 3y >  - 2\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP