Câu hỏi:

31/10/2025 104 Lưu

Cho biểu thức \(A = \frac{{4\tan x + 2\cot x}}{{\tan x + \cot x + 3}} = 2\). Tính giá trị của biểu thức \(P = \frac{{2\sin x + \cos x}}{{3\sin x - 2\cos x}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 1

Ta có \(A = \frac{{4\tan x + 2\cot x}}{{\tan x + \cot x + 3}} = 2\)

\( \Leftrightarrow 4\tan x + 2\cot x = 2\tan x + 2\cot x + 6\)

\( \Leftrightarrow \tan x = 3\)

\( \Leftrightarrow \frac{{\sin x}}{{\cos x}} = 3\)\( \Leftrightarrow \sin x = 3\cos x\).

Do đó \(P = \frac{{2\sin x + \cos x}}{{3\sin x - 2\cos x}}\)\( = \frac{{6\cos x + \cos x}}{{9\cos x - 2\cos x}}\)\( = \frac{{7\cos x}}{{7\cos x}} = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Ta có \(\sin \alpha  = \frac{{\sqrt 3 }}{2};\cos \alpha  =  - \frac{1}{2}\).

Do đó \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\sqrt 3 }}{2}:\left( { - \frac{1}{2}} \right) =  - \sqrt 3 \).

Lời giải

a) Đ, b) S, c) S, d) Đ

a) Gọi \(G\) là trọng tâm của tam giác \(ABC\), ta có : \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \vec 0 \Rightarrow \overrightarrow {GB}  + \overrightarrow {GC}  =  - \overrightarrow {GA} \)

b) \(\overrightarrow {BA}  + \overrightarrow {BC}  = 2\overrightarrow {BN} \).

c) \(\overrightarrow {AB}  = \overrightarrow {GB}  - \overrightarrow {GA}  = \overrightarrow {GB}  + (\overrightarrow {GB}  + \overrightarrow {GC} )\)\( = 2\overrightarrow {GB}  + \overrightarrow {GC}  =  - 2 \cdot \frac{2}{3} \cdot \overrightarrow {BN}  - \frac{2}{3}\overrightarrow {CP} \).

d) \(\overrightarrow {BC}  = \overrightarrow {GC}  - \overrightarrow {GB}  =  =  - \frac{2}{3}\overrightarrow {CP}  + \frac{2}{3}\overrightarrow {BN} {\rm{. }}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP