Câu hỏi:

07/11/2025 32 Lưu

Điểm \[A\left( { - 1;\,3} \right)\] là điểm thuộc miền nghiệm của bất phương trình:

A. \[ - 3x + 2y - 4 > 0\];                                                 
B. \[x + 3y < 0\];
C. \[3x - y > 0\];                                                           
D. \[2x - y + 4 > 0\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

+)Thay \[x = - 1;\,y = 3\] vào bất phương trình \[ - 3x + 2y - 4 > 0\] ta được \[ - 3.( - 1) + 2.3 - 4 = 5 > 0\] là một mệnh đề đúng. Do đó A đúng.

+) Thay \[x = - 1;\,y = 3\] vào bất phương trình \[x + 3y < 0\] ta được \[ - 1 + 3.3 = 8 < 0\] là một mệnh đề sai. Do đó B sai.

+) Thay \[x = - 1;\,y = 3\]vào bất phương trình \[3x - y > 0\] ta được \[3.( - 1) - 3 = - 6 > 0\] là một mệnh đề sai. Do đó C sai.

+) Thay \[x = - 1;\,y = 3\]vào bất phương trình \[2x - y + 4 > 0\] ta được \[2.( - 1) - 3 + 4 = - 1 > 0\] là một mệnh đề sai. Do đó D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {CA} \];                                    
B. \[\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \];
C. \[\overrightarrow {AB} + \overrightarrow {AD} = 2\overrightarrow {AO} \];                      
D. \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \].

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: A (ảnh 1)

Áp dụng quy tắc hình bình hành ta được:

\[\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \]. Do đó A sai, B đúng.

Ta có: O là tâm của hình bình hành nên \(\overrightarrow {AC} = 2\overrightarrow {AO} \)                

Khi đó \[\overrightarrow {AB} + \overrightarrow {AD} = 2\overrightarrow {AO} \]. Do đó C đúng.                

\[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \left( {\overrightarrow {OA} + \overrightarrow {OC} } \right) + \left( {\overrightarrow {OB} + \overrightarrow {OD} } \right) = \overrightarrow 0 \]. Do đó D đúng.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Coi người quan sát từ điểm \[A\] cách gốc cây \[B\] một khoảng bằng \[30\]m, nhìn ngọn cây \[C\] dưới góc \[45^\circ \]. Ta có hình vẽ sau:

Đáp án đúng là: A (ảnh 1)

Khi đó \[AB = 30\,\,m,\widehat {CAH} = 45^\circ \].

Do sườn đồi có độ dốc \[12\% \], nên sườn đồi tạo với phương ngang một góc \[\widehat {BAH} \approx 7^\circ \].

Từ đó \[\widehat {BAC} = \widehat {HAC} - \widehat {HAB} \approx 45^\circ - 7^\circ = 38^\circ \]\[\widehat {BCA} = 45^\circ \].

Áp dụng định lí sin cho tam giác \[ABC\], ta được:

\[BC = \frac{{AB}}{{\sin \widehat {BCA}}}.\sin \widehat {BAC} = \frac{{30}}{{\sin 38^\circ }}.\sin 45^\circ \approx 26\](m).

Vậy chiều cao của cây khoảng \(26\,\,m\).

Câu 3

A. \[4\];                        
B. \[5\];                         
C. \[6\];                                                                  
D. \[8\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[S = \frac{{abc}}{{4r}}\];                                                                        
B. \[r = \frac{{2S}}{{a + b + c}}\];
C. \[{a^2} = {b^2} + {c^2} + 2bc\cos A\];                                 
D. \[S = r\left( {a + b + c} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{1}{2}a\];              
B. \[a\];                             
C. \[a\sqrt 2 \];                 
D. \[2a\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP