Câu hỏi:

07/11/2025 69 Lưu

(1,0 điểm) Khu vườn nhà anh T có dạng miền tứ giác \[ABCD\] với các kích thước đo đạc được ghi trên hình vẽ bên dưới:

 Khu vườn nhà anh T có dạng miền tứ g (ảnh 1)

a) Tính khoảng cách từ điểm \[A\] đến điểm \[B\] (kết quả làm tròn một chữ số thập phân).

b) Tính diện tích khu vườn đó (kết quả làm tròn một chữ số thập phân).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Xét tam giác \[ABC\], ta có:

\[\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) = 180^\circ - \left( {105^\circ + 30^\circ } \right) = 45^\circ \].

Áp dụng định lý sin, ta có: \[\frac{{AB}}{{\sin 30^\circ }} = \frac{{AC}}{{\sin 105^\circ }} \Leftrightarrow \frac{{AB}}{{\sin 30^\circ }} = \frac{{22}}{{\sin 105^\circ }} \Rightarrow AB \approx 11,4\]

Vậy khoảng cách từ \[A\] đến \[B\]\[11,4\]m.

b) Diện tích của khu vườn: \[{S_{ABCD}} = {S_{ABC}} + {S_{ADC}}\].

Xét tam giác \[ABC\] có: \[{S_{ABC}} = \frac{1}{2}AB.AC.\sin \widehat A \approx \frac{1}{2}.11,4.22.\sin 45^\circ \approx 88,67\]

Xét tam giác \[ADC\]có: \[p = \frac{{AD + CD + AC}}{2} = \frac{{20 + 22 + 6}}{2} = 24\]

\[\begin{array}{l}{S_{ADC}} = \sqrt {p\left( {p - AD} \right)\left( {p - CD} \right)\left( {p - AC} \right)} \\ \Rightarrow {S_{ADC}} = \sqrt {24.\left( {24 - 20} \right)\left( {24 - 22} \right)\left( {24 - 6} \right)} \approx 58,79\end{array}\]

\[ \Rightarrow {S_{ABCD}} \approx 88,67 + 58,79 \approx 147,5\].

Vậy diện tích khu vườn đó là \(147,5\,\,{m^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {CA} \];                                    
B. \[\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \];
C. \[\overrightarrow {AB} + \overrightarrow {AD} = 2\overrightarrow {AO} \];                      
D. \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \].

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: A (ảnh 1)

Áp dụng quy tắc hình bình hành ta được:

\[\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \]. Do đó A sai, B đúng.

Ta có: O là tâm của hình bình hành nên \(\overrightarrow {AC} = 2\overrightarrow {AO} \)                

Khi đó \[\overrightarrow {AB} + \overrightarrow {AD} = 2\overrightarrow {AO} \]. Do đó C đúng.                

\[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \left( {\overrightarrow {OA} + \overrightarrow {OC} } \right) + \left( {\overrightarrow {OB} + \overrightarrow {OD} } \right) = \overrightarrow 0 \]. Do đó D đúng.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Coi người quan sát từ điểm \[A\] cách gốc cây \[B\] một khoảng bằng \[30\]m, nhìn ngọn cây \[C\] dưới góc \[45^\circ \]. Ta có hình vẽ sau:

Đáp án đúng là: A (ảnh 1)

Khi đó \[AB = 30\,\,m,\widehat {CAH} = 45^\circ \].

Do sườn đồi có độ dốc \[12\% \], nên sườn đồi tạo với phương ngang một góc \[\widehat {BAH} \approx 7^\circ \].

Từ đó \[\widehat {BAC} = \widehat {HAC} - \widehat {HAB} \approx 45^\circ - 7^\circ = 38^\circ \]\[\widehat {BCA} = 45^\circ \].

Áp dụng định lí sin cho tam giác \[ABC\], ta được:

\[BC = \frac{{AB}}{{\sin \widehat {BCA}}}.\sin \widehat {BAC} = \frac{{30}}{{\sin 38^\circ }}.\sin 45^\circ \approx 26\](m).

Vậy chiều cao của cây khoảng \(26\,\,m\).

Câu 3

A. \[4\];                        
B. \[5\];                         
C. \[6\];                                                                  
D. \[8\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[S = \frac{{abc}}{{4r}}\];                                                                        
B. \[r = \frac{{2S}}{{a + b + c}}\];
C. \[{a^2} = {b^2} + {c^2} + 2bc\cos A\];                                 
D. \[S = r\left( {a + b + c} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{1}{2}a\];              
B. \[a\];                             
C. \[a\sqrt 2 \];                 
D. \[2a\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP