Cho tam giác \(ABC\) thỏa mãn \({\sin ^2}A = \sin B.\sin C\). Khẳng định nào dưới đây là đúng?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Áp dụng định lí sin trong tam giác \(ABC\), ta được:
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)
\( \Rightarrow \sin A = \frac{a}{{2R}};\sin B = \,\,\frac{b}{{2R}};\,\,\sin C = \,\,\frac{c}{{2R}}.\)
\( \Rightarrow \frac{{{a^2}}}{{4{R^2}}} = \frac{b}{{2R}}.\frac{c}{{2R}}\)
\( \Leftrightarrow {a^2} = b.c\)
Áp dụng hệ quả của định lí cosin trong tam giác \(ABC\), ta được:
\[{\rm{cos}}A = \frac{{{b^2} + {c^2} - {a^2}}}{{2.b.c}} = \frac{{{b^2} + {c^2} - bc}}{{2.b.c}}\]
Áp dụng bất đẳng thức cô – si cho hai số dương \({b^2} + {c^2}\) ta được:
\({b^2} + {c^2} \ge 2bc\)
Khi đó: \[{\rm{cos}}A = \frac{{{b^2} + {c^2} - bc}}{{2.b.c}} \ge \frac{{2bc - bc}}{{2bc}} = \frac{1}{2}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Xét tam giác \(AHB\) vuông tại \(H\), có:
\(A{B^2} = A{H^2} + H{B^2} = {1^2} + {6^2} = 37\)
\( \Leftrightarrow AB = \sqrt {37} \,\,cm\)
\(\tan ABH = \frac{{AH}}{{BH}} = \frac{1}{6} \Rightarrow \widehat {ABH} \approx 9,5^\circ \).
\( \Rightarrow \widehat {ABC} = 90^\circ - 9,5^\circ = 80,5^\circ \)
\( \Rightarrow \widehat {ACB} = 180^\circ - 80,5^\circ - 44^\circ = 55,5^\circ \)
Áp dụng định lí sin trong tam giác \(ABC\), có:
\(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{BC}}{{\sin \widehat {BAC}}} \Leftrightarrow BC = \frac{{AB.\sin \widehat {BAC}}}{{\sin \widehat {ACB}}} = \frac{{\sqrt {37} .\sin 44^\circ }}{{\sin 55,5^\circ }} \approx 5,1\,\,\left( m \right).\)
Vậy chiều cao của cây đèn đường khoảng \(5,1\,\,m\).
Lời giải
Hướng dẫn giải
Đáp án đúng là: A

Các vectơ bằng bằng \(\overrightarrow {OC} \) có điểm đầu và điểm cuối là các đỉnh của lục giác là: \(\overrightarrow {BA} ,\,\,\overrightarrow {ED} \).
Vậy có 2 vectơ thỏa mãn điều kiện.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

