Câu hỏi:

07/11/2025 85 Lưu

(1,0 điểm) Cho các địa điểm \(A,B\)\(C\) (như hình vẽ) biết \(AB = 100\,\,km,\,AC = 150\,\,km,\widehat {ABC} = 110^\circ \). Bạn An muốn đi từ \(A\) đến \(C\) bằng một trong hai cách sau đây:

Cho các địa điểm \(A,B\) và \(C\) (như hình vẽ) biết \(AB = 100\,\,km,\,AC = 150\,\,km,\widehat {ABC} = 110^\circ \). Bạn An muốn đi từ \(A\) đến \(C\) bằng một trong hai cách sau đây: (ảnh 1)

Cách 1: Đi tàu thủy từ \(A\)\(C\) với vận tốc \(30\,\,km/h\).

Cách 2: Đi xe hơi từ \(A\)\(B\) rồi từ \(B\) đến \(C\) với vận tốc \(50\,\,km/h\).

Hỏi đi cách nào thì An sẽ đến \(C\) sớm hơn?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Áp dụng định lí cosin trong tam giác \(ABC\), có:

\(A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.{\rm{cos}}\widehat {ABC}\)

\( = {100^2} + {150^2} - 2.100.150.{\rm{cos110}}^\circ \)

\( \approx 42\,\,760,6\)

\( \Rightarrow AC \approx 206,8\,\,\left( {km} \right)\).

Thời gian đi tàu thủy từ \(A\) đến \(C\) là: \(206,8:30 \approx 7\left( h \right)\).

Tổng quãng đường đi theo cách 2 là: \(100 + 150 = 250\,\,\,\left( {km} \right)\).

Thời gian đi theo cách 2 là: \(250:50 = 5\left( h \right)\).

Vậy đi theo cách 2 thì An sẽ đến \(C\) sớm hơn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{{7\sqrt 3 }}{3}\);                                  
B. \(\frac{{10\sqrt 3 }}{3}\);                        
C.\(7\sqrt 3 \);               
D. \(10\sqrt 3 \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Nửa chu vi tam giác \(ABC\) là: \(p = \frac{{5 + 7 + 8}}{2} = 10\).

Diện tích tam giác \(ABC\) là:

\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = \sqrt {10\left( {10 - 5} \right)\left( {10 - 7} \right)\left( {10 - 8} \right)}  = 10\sqrt 3 \) (đvdt).

Bán kính đường tròn ngoại tiếp tam giác ABC là:

\(R = \frac{{abc}}{{4S}} = \frac{{5.7.8}}{{4.10\sqrt 3 }} = \frac{{7\sqrt 3 }}{3}\).

Lời giải

Hướng dẫn giải

Gọi \(x\) là số ly thức ăn loại \(A\), \(y\) là số ly thức ăn loại \(B\) \(\left( {x;\,y \ge 0} \right)\).

Số protein trong \(x\) ly thức ăn loại \(A\) và \(y\) ly thức ăn loại \(B\) là: \(20x + 10y\,\,\left( g \right)\).

Vì hỗn hợp chứa ít nhất \(50g\) protein nên ta có bất phương trình: \(20x + 10y\, \ge 50\).

Số canxi trong \(x\) ly thức ăn loại \(A\) và \(y\) ly thức ăn loại \(B\) là: \(20x + 50y\,\,\left( {mg} \right)\).

Vì hỗn hợp chứa ít nhất \(130mg\) canxi nên ta có bất phương trình: \(20x + 50y\, \ge 130\).

Số calo trong \(x\) ly thức ăn loại \(A\) và \(y\) ly thức ăn loại \(B\) là: \(100x + 150y\,\,\left( {calo} \right)\).

Vì hỗn hợp chứa không quá \(550\,calo\) canxi nên ta có bất phương trình: \(100x + 150y\, \le 550\).

Khi đó ta có hệ bất phương trình: \[\left\{ \begin{array}{l}20x + 10y\, \ge 50\\20x + 50y \ge 130\\100x + 150y \le 550\\x \ge 0\\y \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x + y\, \ge 5\\2x + 5y \ge 13\\2x + 3y \le 11\\x \ge 0\\y \ge 0\end{array} \right.\]

Biểu diễn miền nghiệm của hệ bất phương trình ta được:

Một người ăn kiêng muốn trộn hai loại thức ăn \(A\) và \(B\) để tạo ra một hỗn hợp chứa ít nhất \(50g\) protein, ít nhất \(130\,mg\) canxi và không quá \(550\,calo\). Giá trị dinh dưỡng của thức ăn loại \(A\) và \(B\) được cho trong bảng sau: (ảnh 1)

Vì vậy miền nghiệm của hệ bất phương trình là miền trong tam giác \(MNP\) với \(M\left( {\frac{3}{2};\,\,2} \right)\), \(N\left( {1;\,\,3} \right)\), \(P\left( {4;\,\,1} \right)\).                                    

Giá tiền cho \(x\) ly thức ăn loại \(A\) và \(y\) ly thức ăn loại \(B\) nên ta có hàm \(F\left( {x;\,\,y} \right) = 110x + 60y\) (nghìn đồng).

Ta có:

\(F\left( {\frac{3}{2};\,\,2} \right) = 110.\frac{3}{2} + 60.2 = 285\);

\(F\left( {1;\,\,3} \right) = 110.1 + 60.3 = 290\);

\(F\left( {4;\,\,1} \right) = 110.4 + 60.1 = 500\).

Vậy người ăn kiêng phải sử dụng bao \(1\) ly thức ăn loại \(A\) và \(3\) ly thức ăn loại \(B\) để số tiền bỏ ra là ít nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(A \cap B\);              
B. \({C_A}B\);               
C. \(A \cup B\);                               
D. \(A\backslash B\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. “Nếu hai tam giác bằng nhau và có một cặp cạnh tương ứng bằng nhau thì chúng đồng dạng;                              
B. “Nếu hai tam giác bằng nhau thì chúng đồng dạng và có một cặp cạnh tương ứng bằng nhau”;
C. “Nếu hai tam giác bằng nhau thì chúng có một cạnh tương ứng bằng nhau”;
D. “Hai tam giác đồng dạng và có 1 cạnh tương ứng bằng nhau khi và chỉ khi chúng bằng nhau”.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2,37\,\,c{m^2}\);      
B. \(0,63\,\,c{m^2}\);      
C. \(2,45\,\,c{m^2}\);           
D. \(1,58\,\,c{m^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP