(1,0 điểm) Cho các địa điểm \(A,B\) và \(C\) (như hình vẽ) biết \(AB = 100\,\,km,\,AC = 150\,\,km,\widehat {ABC} = 110^\circ \). Bạn An muốn đi từ \(A\) đến \(C\) bằng một trong hai cách sau đây:

Cách 1: Đi tàu thủy từ \(A\) và \(C\) với vận tốc \(30\,\,km/h\).
Cách 2: Đi xe hơi từ \(A\) và \(B\) rồi từ \(B\) đến \(C\) với vận tốc \(50\,\,km/h\).
Hỏi đi cách nào thì An sẽ đến \(C\) sớm hơn?
(1,0 điểm) Cho các địa điểm \(A,B\) và \(C\) (như hình vẽ) biết \(AB = 100\,\,km,\,AC = 150\,\,km,\widehat {ABC} = 110^\circ \). Bạn An muốn đi từ \(A\) đến \(C\) bằng một trong hai cách sau đây:

Cách 1: Đi tàu thủy từ \(A\) và \(C\) với vận tốc \(30\,\,km/h\).
Cách 2: Đi xe hơi từ \(A\) và \(B\) rồi từ \(B\) đến \(C\) với vận tốc \(50\,\,km/h\).
Hỏi đi cách nào thì An sẽ đến \(C\) sớm hơn?
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Áp dụng định lí cosin trong tam giác \(ABC\), có:
\(A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.{\rm{cos}}\widehat {ABC}\)
\( = {100^2} + {150^2} - 2.100.150.{\rm{cos110}}^\circ \)
\( \approx 42\,\,760,6\)
\( \Rightarrow AC \approx 206,8\,\,\left( {km} \right)\).
Thời gian đi tàu thủy từ \(A\) đến \(C\) là: \(206,8:30 \approx 7\left( h \right)\).
Tổng quãng đường đi theo cách 2 là: \(100 + 150 = 250\,\,\,\left( {km} \right)\).
Thời gian đi theo cách 2 là: \(250:50 = 5\left( h \right)\).
Vậy đi theo cách 2 thì An sẽ đến \(C\) sớm hơn.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D

Miền nghiệm của hệ bất phương trình đã cho là miền trong tứ giác \(OABC\) với \(O\left( {0;\,\,0} \right),\,A\left( {0;\,\,5} \right),\,B\left( {2;\,\,4} \right),\,C\left( {4;\,\,0} \right)\).
Tính giá trị biểu thức \(F\left( {x;\,\,y} \right)\) tại các điểm \(O,\,\,A,\,\,B,\,\,C\), ta được:
Tại \(O\left( {0;\,\,0} \right)\,\)ta có \(F\left( {0;\,\,0} \right) = 3.0 - 2.0 + 1 = 1\);
Tại \(A\left( {0;\,\,5} \right)\) ta có \(F\left( {0;\,\,5} \right) = 3.0 - 2.5 + 1 = - 9\);
Tại \(B\left( {2;\,\,4} \right)\) ta có \(F\left( {2;\,\,4} \right) = 3.2 - 2.4 + 1 = - 1\);
Tại \(C\left( {4;\,\,0} \right)\) ta có \(F\left( {4;\,\,0} \right) = 3.4 - 2.0 + 1 = 13\).
Vậy giá trị lớn nhất của \(F\left( {x;\,\,y} \right)\) là 13.
Lời giải
Hướng dẫn giải
Gọi \(x\) là số ly thức ăn loại \(A\), \(y\) là số ly thức ăn loại \(B\) \(\left( {x;\,y \ge 0} \right)\).
Số protein trong \(x\) ly thức ăn loại \(A\) và \(y\) ly thức ăn loại \(B\) là: \(20x + 10y\,\,\left( g \right)\).
Vì hỗn hợp chứa ít nhất \(50g\) protein nên ta có bất phương trình: \(20x + 10y\, \ge 50\).
Số canxi trong \(x\) ly thức ăn loại \(A\) và \(y\) ly thức ăn loại \(B\) là: \(20x + 50y\,\,\left( {mg} \right)\).
Vì hỗn hợp chứa ít nhất \(130mg\) canxi nên ta có bất phương trình: \(20x + 50y\, \ge 130\).
Số calo trong \(x\) ly thức ăn loại \(A\) và \(y\) ly thức ăn loại \(B\) là: \(100x + 150y\,\,\left( {calo} \right)\).
Vì hỗn hợp chứa không quá \(550\,calo\) canxi nên ta có bất phương trình: \(100x + 150y\, \le 550\).
Khi đó ta có hệ bất phương trình: \[\left\{ \begin{array}{l}20x + 10y\, \ge 50\\20x + 50y \ge 130\\100x + 150y \le 550\\x \ge 0\\y \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x + y\, \ge 5\\2x + 5y \ge 13\\2x + 3y \le 11\\x \ge 0\\y \ge 0\end{array} \right.\]
Biểu diễn miền nghiệm của hệ bất phương trình ta được:

Vì vậy miền nghiệm của hệ bất phương trình là miền trong tam giác \(MNP\) với \(M\left( {\frac{3}{2};\,\,2} \right)\), \(N\left( {1;\,\,3} \right)\), \(P\left( {4;\,\,1} \right)\).
Giá tiền cho \(x\) ly thức ăn loại \(A\) và \(y\) ly thức ăn loại \(B\) nên ta có hàm \(F\left( {x;\,\,y} \right) = 110x + 60y\) (nghìn đồng).
Ta có:
\(F\left( {\frac{3}{2};\,\,2} \right) = 110.\frac{3}{2} + 60.2 = 285\);
\(F\left( {1;\,\,3} \right) = 110.1 + 60.3 = 290\);
\(F\left( {4;\,\,1} \right) = 110.4 + 60.1 = 500\).
Vậy người ăn kiêng phải sử dụng bao \(1\) ly thức ăn loại \(A\) và \(3\) ly thức ăn loại \(B\) để số tiền bỏ ra là ít nhất.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

