(1,0 điểm) Cho các địa điểm \(A,B\) và \(C\) (như hình vẽ) biết \(AB = 100\,\,km,\,AC = 150\,\,km,\widehat {ABC} = 110^\circ \). Bạn An muốn đi từ \(A\) đến \(C\) bằng một trong hai cách sau đây:

Cách 1: Đi tàu thủy từ \(A\) và \(C\) với vận tốc \(30\,\,km/h\).
Cách 2: Đi xe hơi từ \(A\) và \(B\) rồi từ \(B\) đến \(C\) với vận tốc \(50\,\,km/h\).
Hỏi đi cách nào thì An sẽ đến \(C\) sớm hơn?
(1,0 điểm) Cho các địa điểm \(A,B\) và \(C\) (như hình vẽ) biết \(AB = 100\,\,km,\,AC = 150\,\,km,\widehat {ABC} = 110^\circ \). Bạn An muốn đi từ \(A\) đến \(C\) bằng một trong hai cách sau đây:

Cách 1: Đi tàu thủy từ \(A\) và \(C\) với vận tốc \(30\,\,km/h\).
Cách 2: Đi xe hơi từ \(A\) và \(B\) rồi từ \(B\) đến \(C\) với vận tốc \(50\,\,km/h\).
Hỏi đi cách nào thì An sẽ đến \(C\) sớm hơn?
Quảng cáo
Trả lời:
Hướng dẫn giải
Áp dụng định lí cosin trong tam giác \(ABC\), có:
\(A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.{\rm{cos}}\widehat {ABC}\)
\( = {100^2} + {150^2} - 2.100.150.{\rm{cos110}}^\circ \)
\( \approx 42\,\,760,6\)
\( \Rightarrow AC \approx 206,8\,\,\left( {km} \right)\).
Thời gian đi tàu thủy từ \(A\) đến \(C\) là: \(206,8:30 \approx 7\left( h \right)\).
Tổng quãng đường đi theo cách 2 là: \(100 + 150 = 250\,\,\,\left( {km} \right)\).
Thời gian đi theo cách 2 là: \(250:50 = 5\left( h \right)\).
Vậy đi theo cách 2 thì An sẽ đến \(C\) sớm hơn.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Nửa chu vi tam giác \(ABC\) là: \(p = \frac{{5 + 7 + 8}}{2} = 10\).
Diện tích tam giác \(ABC\) là:
\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {10\left( {10 - 5} \right)\left( {10 - 7} \right)\left( {10 - 8} \right)} = 10\sqrt 3 \) (đvdt).
Bán kính đường tròn ngoại tiếp tam giác ABC là:
\(R = \frac{{abc}}{{4S}} = \frac{{5.7.8}}{{4.10\sqrt 3 }} = \frac{{7\sqrt 3 }}{3}\).
Lời giải
Hướng dẫn giải
Gọi \(x\) là số ly thức ăn loại \(A\), \(y\) là số ly thức ăn loại \(B\) \(\left( {x;\,y \ge 0} \right)\).
Số protein trong \(x\) ly thức ăn loại \(A\) và \(y\) ly thức ăn loại \(B\) là: \(20x + 10y\,\,\left( g \right)\).
Vì hỗn hợp chứa ít nhất \(50g\) protein nên ta có bất phương trình: \(20x + 10y\, \ge 50\).
Số canxi trong \(x\) ly thức ăn loại \(A\) và \(y\) ly thức ăn loại \(B\) là: \(20x + 50y\,\,\left( {mg} \right)\).
Vì hỗn hợp chứa ít nhất \(130mg\) canxi nên ta có bất phương trình: \(20x + 50y\, \ge 130\).
Số calo trong \(x\) ly thức ăn loại \(A\) và \(y\) ly thức ăn loại \(B\) là: \(100x + 150y\,\,\left( {calo} \right)\).
Vì hỗn hợp chứa không quá \(550\,calo\) canxi nên ta có bất phương trình: \(100x + 150y\, \le 550\).
Khi đó ta có hệ bất phương trình: \[\left\{ \begin{array}{l}20x + 10y\, \ge 50\\20x + 50y \ge 130\\100x + 150y \le 550\\x \ge 0\\y \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x + y\, \ge 5\\2x + 5y \ge 13\\2x + 3y \le 11\\x \ge 0\\y \ge 0\end{array} \right.\]
Biểu diễn miền nghiệm của hệ bất phương trình ta được:

Vì vậy miền nghiệm của hệ bất phương trình là miền trong tam giác \(MNP\) với \(M\left( {\frac{3}{2};\,\,2} \right)\), \(N\left( {1;\,\,3} \right)\), \(P\left( {4;\,\,1} \right)\).
Giá tiền cho \(x\) ly thức ăn loại \(A\) và \(y\) ly thức ăn loại \(B\) nên ta có hàm \(F\left( {x;\,\,y} \right) = 110x + 60y\) (nghìn đồng).
Ta có:
\(F\left( {\frac{3}{2};\,\,2} \right) = 110.\frac{3}{2} + 60.2 = 285\);
\(F\left( {1;\,\,3} \right) = 110.1 + 60.3 = 290\);
\(F\left( {4;\,\,1} \right) = 110.4 + 60.1 = 500\).
Vậy người ăn kiêng phải sử dụng bao \(1\) ly thức ăn loại \(A\) và \(3\) ly thức ăn loại \(B\) để số tiền bỏ ra là ít nhất.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

