Cho hệ bất phương trình \(\left\{ \begin{array}{l}x + y < 0\\y \ge 0\\x \ge - 1\end{array} \right.\). Điểm \(M\left( {{x_0};\,\,{y_0}} \right)\) là điểm thỏa mãn miền nghiệm của hệ bất phương trình trên. Khi đó biểu thức nào dưới đây là đúng?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Vì điểm \(M\left( {{x_0};\,\,{y_0}} \right)\) là điểm thỏa mãn miền nghiệm của hệ bất phương trình trên nên ta có:
\({x_0} + {y_0} < 0\). Do đó A sai.
\({x_0} \ge - 1\). Do đó B sai.
\({y_0} \ge 0 > - 1\) nên \({y_0} \ge - 1\) là mệnh đề đúng. Do đó C đúng.
\({x_0} - {y_0} > - 1\) là chưa đủ điều kiện để khẳng định được tính đúng sai. Do đó D sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
+) Nếu tam giác \(ABC\) đều thì \(AB = AC = BC\). Do đó \(\left( I \right)\) là mệnh đề đúng.
+) Ta có nếu \(a = 3,b = 5\) là các số lẻ vẫn thỏa mãn \(a + b = 3 + 5 = 8\) chẵn. Do đó \(\left( {II} \right)\) là mệnh đề sai.
+) Nếu tam giác \(ABC\) có tổng hai góc bằng \(90^\circ \) thì tam giác \(ABC\) vuông. Do đó \(\left( {III} \right)\) là mệnh đề sai.
Vậy có duy nhất một mệnh đề đúng.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Mệnh đề phủ định của mệnh đề là .
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.