Lớp 10A2 có \(21\) học sinh đạt học lực giỏi và \(24\) học sinh đạt hạnh kiểm tốt. Trong đó có \(15\) học sinh vừa đạt học lực giỏi và đạt hạnh kiểm tốt, \(11\) học sinh không đạt học lực giỏi và đạt hạnh kiểm tốt. Hỏi lớp 10A2 có bao nhiêu học sinh?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Số học sinh của lớp 10A2 là:
\(21 + 24 - 15 + 11 = 41\) (học sinh).
Vậy lớp 10A2 có \(41\) học sinh.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi số \(ha\) trồng dứa và trồng củ đậu lần lượt là \(x\) và \(y\) (\(ha\)), \(\left( {x,y \ge 0} \right)\).
Khi đó ta có: \(x + y \le 8\).
Tổng số công trồng \(x\left( {ha} \right)\) dứa và \(y\left( {ha} \right)\) củ đậu thỏa mãn không quá \(180\) công là: \(20x + 30y \le 180\) hay \(2x + 3y \le 18\).
Khi đó ta có hệ bất phương trình: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 8\\2x + 3y \le 18\end{array} \right.\).
Miền nghiệm của hệ bất phương trình là miền trong của tứ giác \(OABC\) với \(O\left( {0;\,\,0} \right)\), \(A\left( {0;\,\,6} \right)\), \(B\left( {6;\,\,2} \right)\), \(D\left( {8;\,\,0} \right)\).

Tiền thu được khi trồng \(x\left( {ha} \right)\) dứa và \(y\left( {ha} \right)\) củ đậu là: \(F\left( {x;\,\,y} \right) = 5x + 4y\) (triệu đồng).
Ta có:
Tại \(O\left( {0;\,\,0} \right)\) có \(F\left( {0;\,\,0} \right) = 5.0 + 4.0 = 0\);
Tại \(A\left( {0;\,\,6} \right)\) có \(F\left( {0;\,\,6} \right) = 5.0 + 4.6 = 24\);
Tại \(B\left( {6;\,\,2} \right)\) có \(F\left( {6;\,\,2} \right) = 5.6 + 4.2 = 38\);
Tại \(D\left( {8;\,\,0} \right)\) có \(F\left( {8;\,\,0} \right) = 5.8 + 4.0 = 40\).
Vậy để thu được nhiều tiền nhất hộ nông dân đó cần trồng \(8\,\,ha\) dứa và \(0\,\,ha\) củ đậu.
Lời giải
Hướng dẫn giải
a) +) Ta có:
\(\left( {2x - 1} \right)\left( {{x^2} - 4} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}2x - 1 = 0\\{x^2} - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{2}\\x = - 2\\x = 2\end{array} \right.\)
Mà \( - 2;\,\,2 \in \mathbb{Z}\) và \(\frac{1}{2} \notin \mathbb{Z}\) nên \(A = \left\{ { - 2;\,\,2} \right\}\).
Xét \(\left| x \right| \le 3 \Leftrightarrow \left[ \begin{array}{l} - x \le 3\\x \le 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge - 3\\x \le 3\end{array} \right. \Leftrightarrow - 3 \le x \le 3\)
Mà \(x \in \mathbb{N}\) nên \(B = \left\{ {0;\,\,1;\,\,2;\,\,3} \right\}\).
Vì vậy \(A \cup B = \left\{ { - 2;\,\,0;\,\,1;\,\,2;\,\,3} \right\}\).
b) Để \(M \cap N = N\) thì \(N \subset M\)
\( \Leftrightarrow 0 < m < m + 1 \le 3\)
\( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\m + 1 \le 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\m \le 2\end{array} \right. \Leftrightarrow 0 < m \le 2\)
Vậy với \(0 < m \le 2\) thì \(M \cap N = N\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

