Cho góc \(\alpha \) biết \(0^\circ \le \alpha \le 180^\circ \), biết \[\cos \alpha = \frac{1}{4}\]. Khi đó giá trị của \(\tan \alpha \) bằng
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - {\left( {\frac{1}{4}} \right)^2} = \frac{{15}}{{16}}\)
Mà \(0^\circ \le \alpha \le 180^\circ \) nên \(\sin \alpha \ge 0\), do đó, \(\sin \alpha = \frac{{\sqrt {15} }}{4}\).
Vậy \(\tan \alpha = \frac{{\sin \alpha }}{{{\rm{cos}}\alpha }} = \frac{{\frac{{\sqrt {15} }}{4}}}{{\frac{1}{4}}} = \sqrt {15} \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Do \(0^\circ \le \alpha \le 180^\circ \) nên ta có: \[\cos \alpha = - \cos \left( {180^\circ - \alpha } \right)\].
Câu 2
Lời giải
Đáp án đúng là: A
Ta có:
\(A = \left\{ {2;\,\,4;\,\,6;\,\,8;\,\,10} \right\}\)
\(B = \left\{ {x\,\, \vdots \,\,2|x \in \mathbb{N},x < 20} \right\} = \left\{ {0;\,\,2;\,\,4;\,\,6;\,\,8;\,\,10;\,\,12;\,\,14;\,\,16;\,\,18} \right\}\)
Vậy \(A \subset B\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
