Câu hỏi:

17/11/2025 53 Lưu

Cho tam giác \(ABC\)\(AC = 11\,\,\,cm\), \(BC = 9\,\,cm\), \(\widehat {ACB} = 58^\circ \). Độ dài cạnh \(AB\) là (làm tròn kết quả đến hàng đơn vị)

A. 10 cm;                    
B. 9 cm;                           
C. 8 cm;                              
D. 7 cm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Xét tam giác \(ABC\)

Áp dụng định lí côsin ta có:

\(A{B^2} = A{C^2} + B{C^2} - 2AC \cdot BC \cdot \cos \widehat {ACB} = {11^2} + {9^2} - 2 \cdot 11 \cdot 9 \cdot \cos 58^\circ \approx 97\).

\(AB > 0\) nên \(AB \approx \sqrt {97} \approx 10\,\,\)cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 7;                            
B. 8;                                 
C. 9;                                 
D. 10.

Lời giải

Đáp án đúng là: B

Xét tam giác đều \(ABC\) cạnh bằng 4.

Ta có: \(AB = AC = 4\, \Rightarrow \left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {AC} } \right| = 4\,\)

\(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC} = 60^\circ \Rightarrow \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \cos 60^\circ = \frac{1}{2}\).

Vậy \(\overrightarrow {AB} \cdot \overrightarrow {AC} = \left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right| \cdot \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = 4 \cdot 4 \cdot \frac{1}{2} = 8\).

Câu 2

A. \(\overrightarrow {AB} = \overrightarrow {CD} \);                                     
B. \(\overrightarrow {AC} - \overrightarrow {AB} = \overrightarrow {CB} \);        
C. \(\overrightarrow {AD} + \overrightarrow {AB} = \overrightarrow {AC} \);                                        
D. \(\overrightarrow {AD} - \overrightarrow {AB} = \overrightarrow {AC} \).

Lời giải

Đáp án đúng là: C

Cho hình bình hành ABCD. Khẳng định nào sau đây là đúng ? (ảnh 1)

Áp dụng quy tắc hình bình hành cho hình bình hành \(ABCD\) ta có:

\(\overrightarrow {AD} + \overrightarrow {AB} = \overrightarrow {AC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {AB} = \overrightarrow {AM} \);                                                                         
B. \(\overrightarrow {AB} = \frac{1}{2}\overrightarrow {AM} \);                                 
C. \(\overrightarrow {AB} = 2\overrightarrow {AM} \);                                                                         
D. \(\overrightarrow {AB} = - 2\overrightarrow {AM} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{1}{3}\);       
B. \(\frac{4}{3}\);            
C. \(\frac{{ - 7}}{5}\);                       
D. \(\frac{{ - 3}}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\cos \left( {\alpha + 90^\circ } \right)\];    
B. \[ - \cos \left( {180^\circ - \alpha } \right)\];                  
C. \[ - \cos \alpha \];                     
D. \[1 - \cos \left( \alpha \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Giá của vectơ \(\overrightarrow {AM} \) là đường trung trực của đoạn thẳng \(AB\);
B. Điểm đầu của vectơ \(\overrightarrow {AM} \)\(M\);
C. Điểm cuối của vectơ \(\overrightarrow {BA} \)\(B\);
D. Giá của vectơ \(\overrightarrow {MB} \) là đường thẳng \(AB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP